Опубликована: Дек. 8, 2024
Язык: Английский
Опубликована: Дек. 8, 2024
Язык: Английский
Energies, Год журнала: 2025, Номер 18(1), С. 199 - 199
Опубликована: Янв. 5, 2025
This study proposes a control method that integrates deep reinforcement learning with load forecasting, to enhance the energy efficiency of ground source heat pump systems. Eight machine models are first developed predict future cooling loads, and optimal one is then incorporated into learning. Through interaction environment, strategy identified using Q-network optimize supply water temperature from source, allowing for savings. The obtained results show XGBoost model significantly outperforms other in terms prediction accuracy, reaching coefficient determination 0.982, mean absolute percentage error 6.621%, variation root square 10.612%. Moreover, savings achieved through forecasting-based greater than those traditional constant methods by 10%. Additionally, without shortening interval, improved 0.38% compared do not use predictive information. approach requires only continuous between agent which makes it an effective alternative scenarios where sensor equipment data present. It provides smart adaptive optimization solution heating, ventilation, air conditioning systems buildings.
Язык: Английский
Процитировано
1Energy, Год журнала: 2025, Номер unknown, С. 134752 - 134752
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
1Journal of Building Engineering, Год журнала: 2024, Номер unknown, С. 111080 - 111080
Опубликована: Окт. 1, 2024
Язык: Английский
Процитировано
5Applied Sciences, Год журнала: 2025, Номер 15(3), С. 1618 - 1618
Опубликована: Фев. 5, 2025
This study investigates key parameters and applications of artificial intelligence (AI) in predicting the total cost ownership (TCO) for chilled water plants (CWPs). Forecasting TCO CWPs is challenging due to diverse dynamic factors that influence it, necessitating understanding their complex correlations causations. While AI non-AI approaches have improved parameter prediction accuracy different engineering applications, comprehensive literature reviews on chiller methodologies influencing are limited. systematic review addresses three objectives: (1) identify estimating CWPs, (2) examine existing techniques employed forecasting benefits energy savings, (3) evaluate how enhances robustness. Following preferred reporting items meta-analyses (PRISMA) guidelines, this analyzed studies from 2017 2024 sourced Web Science Scopus databases. identifies several TCO, including cooling load, consumption, capacity, Coefficient Performance (COP). The shows AI-driven models, such as deep learning machine algorithms, robustness predictions, it further demonstrates scenarios where outperforms conventional methods. Notably, current predicted be capable reducing life cycle costs by up 18%, based modeling estimates.
Язык: Английский
Процитировано
0Solar Energy, Год журнала: 2025, Номер 291, С. 113378 - 113378
Опубликована: Март 6, 2025
Язык: Английский
Процитировано
0Energy and Buildings, Год журнала: 2025, Номер unknown, С. 115726 - 115726
Опубликована: Апрель 1, 2025
Язык: Английский
Процитировано
0Applied Energy, Год журнала: 2024, Номер 375, С. 123968 - 123968
Опубликована: Авг. 12, 2024
Язык: Английский
Процитировано
3Sensors, Год журнала: 2024, Номер 24(19), С. 6313 - 6313
Опубликована: Сен. 29, 2024
This study systematically reviews the integration of artificial intelligence (AI) and remote sensing technologies to address issue crop water stress caused by rising global temperatures climate change; in particular, it evaluates effectiveness various non-destructive platforms (RGB, thermal imaging, hyperspectral imaging) AI techniques (machine learning, deep ensemble methods, GAN, XAI) monitoring predicting stress. The analysis focuses on variability precipitation due change explores how these can be strategically combined under data-limited conditions enhance agricultural productivity. Furthermore, this is expected contribute improving sustainable practices mitigating negative impacts yield quality.
Язык: Английский
Процитировано
3Journal of Energy Storage, Год журнала: 2024, Номер 109, С. 115058 - 115058
Опубликована: Дек. 30, 2024
Язык: Английский
Процитировано
2Energy, Год журнала: 2024, Номер 306, С. 132343 - 132343
Опубликована: Июль 9, 2024
Язык: Английский
Процитировано
1