RUL Prediction of Lithium-Ion Batteries based on Combined Network Model Considering Partial Charge and Discharge Data DOI
Jing Sun,

Huiyi Yan

Journal of The Electrochemical Society, Год журнала: 2024, Номер 171(12), С. 120522 - 120522

Опубликована: Дек. 3, 2024

Lithium-ion batteries are widely used in new energy vehicles, but capacity regeneration and fluctuations during aging affect the accuracy of remaining useful life (RUL) prediction. Complete charge/discharge data often unavailable actual usage. To address these issues, this paper proposes a combined model for RUL prediction using partial data. Five health indicators extracted from voltage vs time curve processed variational mode decomposition to remove outliers noise, improving correlation between HIs battery capacity. Spearman’s coefficient verifies relationship The Kolmogorov-Arnold Networks-Structured State Space (KAN-S4) is then developed, capturing spatial correlations long-term degradation patterns. Experimental validation our laboratory University Maryland's CALCE center shows that KAN-S4 achieves accurate predictions, even under complex conditions like rapid decline. demonstrates strong robustness generalization across varying usage scenarios.

Язык: Английский

PatchFormer: A novel patch-based transformer for accurate remaining useful life prediction of lithium-ion batteries DOI
Lei Liu, Jiahui Huang, Hongwei Zhao

и другие.

Journal of Power Sources, Год журнала: 2025, Номер 631, С. 236187 - 236187

Опубликована: Янв. 17, 2025

Язык: Английский

Процитировано

2

SMGformer: integrating STL and multi-head self-attention in deep learning model for multi-step runoff forecasting DOI Creative Commons
Wenchuan Wang, M. H. Gu,

Yang-hao Hong

и другие.

Scientific Reports, Год журнала: 2024, Номер 14(1)

Опубликована: Окт. 9, 2024

Accurate runoff forecasting is of great significance for water resource allocation flood control and disaster reduction. However, due to the inherent strong randomness sequences, this task faces significant challenges. To address challenge, study proposes a new SMGformer forecast model. The model integrates Seasonal Trend decomposition using Loess (STL), Informer's Encoder layer, Bidirectional Gated Recurrent Unit (BiGRU), Multi-head self-attention (MHSA). Firstly, in response nonlinear non-stationary characteristics sequence, STL used extract sequence's trend, period, residual terms, multi-feature set based on 'sequence-sequence' constructed as input model, providing foundation subsequent models capture evolution runoff. key features are then captured layer. Next, BiGRU layer learn temporal information these features. further optimize output MHSA mechanism introduced emphasize impact important information. Finally, accurate achieved by transforming through Fully connected verify effectiveness proposed monthly data from two hydrological stations China selected, eight compare performance results show that compared with Informer 1th step MAE decreases 42.2% 36.6%, respectively; RMSE 37.9% 43.6% NSE increases 0.936 0.975 0.487 0.837, respectively. In addition, KGE at 3th 0.960 0.805, both which can maintain above 0.8. Therefore, accurately sequence extend effective period

Язык: Английский

Процитировано

8

A review of Bayesian-filtering-based techniques in RUL prediction for Lithium-Ion batteries DOI
May Htet Htet Khine, Cheong Kim, Nattapol Aunsri

и другие.

Journal of Energy Storage, Год журнала: 2025, Номер 111, С. 115371 - 115371

Опубликована: Янв. 18, 2025

Язык: Английский

Процитировано

1

State of health estimation for lithium-ion batteries based on fragmented charging data and improved gated recurrent unit neural network DOI
Zheng Chen, Peng Yue, Jiangwei Shen

и другие.

Journal of Energy Storage, Год журнала: 2025, Номер 115, С. 115952 - 115952

Опубликована: Фев. 27, 2025

Язык: Английский

Процитировано

1

Lithium batteries health state prediction method based on TCN-GRU-Attention fusion model with multi-source charging information DOI Creative Commons
Yong Liu,

Sangyu Lai,

Yujiao Mai

и другие.

AIP Advances, Год журнала: 2025, Номер 15(2)

Опубликована: Фев. 1, 2025

Lithium-ion batteries inevitably experience a decline in State of Health (SOH) due to prolonged use, and continued operation increases safety risks. Therefore, it is essential develop models that can accurately predict SOH. Cyclic aging experiments are initially conducted on lithium using self-built experimental platform collect data charging voltage temperature aging. A multi-channel temporal convolutional neural network employed perform feature extraction the multi-source data, preserving dependencies features over time. The input enables capture degradation simultaneously, enhancing its ability characterize at any moment. SOH prediction then carried out combination Gated Recurrent Unit (GRU) Self-Attention (SA) mechanism. SA ensures accuracy by calculating weight distribution features, allowing GRU focus most significant aspects data. Finally, model proposed this study compared with traditional Long Short-Term Memory model, encoder fusion model. results show although similar some models, still lower than study. Compared other mean absolute error reduced more 29% average, root square least 20% average.

Язык: Английский

Процитировано

0

Lithium-Ion Battery State of Health Estimation Based on Feature Reconstruction and Transformer-GRU Parallel Architecture DOI Creative Commons
Bing Chen, Yongjun Zhang, Jinsong Wu

и другие.

Energies, Год журнала: 2025, Номер 18(5), С. 1236 - 1236

Опубликована: Март 3, 2025

Estimating the state of health lithium-ion batteries in energy storage systems is a key step their subsequent safety monitoring and optimization management. This study proposes method for estimating based on feature reconstruction Transformer-GRU parallel architecture to solve problems noisy data poor applicability single model different types operating conditions batteries. First, incremental capacity curve was constructed charging data, smoothed using Gaussian filtering, diverse features were extracted combination with voltage curve. Then, this used CEEMDAN algorithm reconstruct IC features, which reduces due process collection processing. Lastly, cross-attention mechanism fuse Transformer GRU neural networks, improve its ability mine time-dependent global estimation. conducted experiments three datasets from Oxford, CALCE, NASA. The results show that RMSE estimation by proposed 0.0071, an improvement 61.41% accuracy baseline model.

Язык: Английский

Процитировано

0

CTBANet: A new method for state of health estimation of lithium-ion batteries DOI
Qinglin Zhu, Xiangfeng Zeng, Zhongren Wang

и другие.

Journal of Energy Storage, Год журнала: 2025, Номер 117, С. 116134 - 116134

Опубликована: Март 13, 2025

Язык: Английский

Процитировано

0

Parallel-branch enhanced ShuffleNet with dual-physics constraints for lithium-ion battery RUL prediction DOI
Hailin Feng, Di Xue

Journal of Energy Storage, Год журнала: 2025, Номер 118, С. 116210 - 116210

Опубликована: Март 22, 2025

Язык: Английский

Процитировано

0

RUL-Mamba: Mamba-based remaining useful life prediction for lithium-ion batteries DOI
Jiahui Huang, Lei Liu, Hongwei Zhao

и другие.

Journal of Energy Storage, Год журнала: 2025, Номер 120, С. 116376 - 116376

Опубликована: Апрель 3, 2025

Язык: Английский

Процитировано

0

Application of the LSTM-GRU compressed model for battery state of health estimation on smart mobile devices DOI
Xiaoming Wu, Wei Lv,

Zihui Lin

и другие.

Journal of Energy Storage, Год журнала: 2025, Номер 123, С. 116641 - 116641

Опубликована: Апрель 27, 2025

Язык: Английский

Процитировано

0