Electric Power Systems Research, Год журнала: 2024, Номер 239, С. 111279 - 111279
Опубликована: Ноя. 23, 2024
Язык: Английский
Electric Power Systems Research, Год журнала: 2024, Номер 239, С. 111279 - 111279
Опубликована: Ноя. 23, 2024
Язык: Английский
IET Renewable Power Generation, Год журнала: 2025, Номер 19(1)
Опубликована: Янв. 1, 2025
Abstract Droop control is at the first level of hierarchy and does not require communication. Having high reliability, usually used in inverter‐based microgrids. The microgrid can operate as an island, it also be connected to main or auxiliary grid. By reviewing extensive literature on role controller microgrids for island mode operation, this study, droop regulation strategy has been covered briefly compactly. example decentralized basic control, its importance revealed operation when possible share power all facilities without needing communicate with other units. Disadvantages common such slow transient dynamics low energy quality non‐linear unbalanced loads, have limited use advanced Therefore, various methods improve investigated so far, some which mentioned. This study highlights application strategies order coordinate distributed generation units microgrid. About 180 published studies field reviewed, classified indexed quick reference.
Язык: Английский
Процитировано
1Applied Soft Computing, Год журнала: 2024, Номер 170, С. 112645 - 112645
Опубликована: Дек. 19, 2024
Язык: Английский
Процитировано
5Advanced Engineering Informatics, Год журнала: 2025, Номер 65, С. 103196 - 103196
Опубликована: Фев. 16, 2025
Язык: Английский
Процитировано
0Heliyon, Год журнала: 2025, Номер 11(4), С. e42872 - e42872
Опубликована: Фев. 1, 2025
Язык: Английский
Процитировано
0International Journal of Electrical Power & Energy Systems, Год журнала: 2025, Номер 168, С. 110644 - 110644
Опубликована: Апрель 18, 2025
Язык: Английский
Процитировано
0Mathematics, Год журнала: 2024, Номер 12(20), С. 3241 - 3241
Опубликована: Окт. 16, 2024
With the rapid development of smart grids, strategic behavior evolution in user-side electricity market transactions has become increasingly complex. To explore dynamic mechanisms this area, paper systematically reviews application evolutionary game theory markets, focusing on its unique advantages modeling multi-agent interactions and strategy optimization. While excels explaining formation long-term stable strategies, it faces limitations when dealing with real-time changes high-dimensional state spaces. Thus, further investigates integration deep reinforcement learning, particularly Q-learning network (DQN), theory, aiming to enhance adaptability applications. The introduction DQN enables participants perform adaptive optimization rapidly changing environments, thereby more effectively responding supply–demand fluctuations markets. Through simulations based a model, study reveals characteristics under different conditions, highlighting interaction patterns among complex environments. In summary, comprehensive review not only demonstrates broad applicability markets but also extends potential decision making through modern algorithms, providing new theoretical foundations practical insights for future policy formulation.
Язык: Английский
Процитировано
3Electric Power Systems Research, Год журнала: 2024, Номер 239, С. 111279 - 111279
Опубликована: Ноя. 23, 2024
Язык: Английский
Процитировано
2