Journal of Energy Storage, Год журнала: 2024, Номер 108, С. 114943 - 114943
Опубликована: Дек. 20, 2024
Язык: Английский
Journal of Energy Storage, Год журнала: 2024, Номер 108, С. 114943 - 114943
Опубликована: Дек. 20, 2024
Язык: Английский
International Journal of Information Technology, Год журнала: 2025, Номер unknown
Опубликована: Фев. 6, 2025
Язык: Английский
Процитировано
1Опубликована: Янв. 15, 2025
This study constructs an intelligent control system based on Deep Q-Network (DQN) to improve efficiency in complex dynamic environments. By employing methods such as input state preprocessing, action design, and reward function optimization, the achieves rapid convergence high-precision control. Through multiple simulation experiments, results show that proposed DQN model outperforms traditional Q-learning algorithm terms of average cumulative rewards, accuracy, energy consumption, demonstrating significant performance advantages. The indicates possesses good adaptability applications, providing important groundwork for future research.
Язык: Английский
Процитировано
0Applied Energy, Год журнала: 2025, Номер 389, С. 125541 - 125541
Опубликована: Март 19, 2025
Язык: Английский
Процитировано
0Frontiers in Computational Neuroscience, Год журнала: 2025, Номер 19
Опубликована: Март 27, 2025
Introduction Recent advances in computational neuroscience highlight the significance of prefrontal cortical meta-control mechanisms facilitating flexible and adaptive human behavior. In addition, hippocampal function, particularly mental simulation capacity, proves essential this process. Rooted from these neuroscientific insights, we present Meta-Dyna , a novel neuroscience-inspired reinforcement learning architecture that demonstrates rapid adaptation to environmental dynamics whilst managing variable goal states state-transition uncertainties. Methods This architectural framework implements integrated with replay which turn optimized task performance limited experiences. We evaluated approach through comprehensive experimental simulations across three distinct paradigms: two-stage Markov decision task, frequently serves decision-making research; stochastic GridWorldLoCA an established benchmark suite for model-based learning; Atari Pong variant incorporating multiple goals under uncertainty. Results Experimental results demonstrate 's superior compared baseline algorithms metrics: average reward, choice optimality, number trials success. Discussions These findings advance our understanding contributing development brain-inspired agents capable flexible, goal-directed behavior within dynamic environments.
Язык: Английский
Процитировано
0Deleted Journal, Год журнала: 2025, Номер 28(1)
Опубликована: Апрель 25, 2025
Язык: Английский
Процитировано
0Journal of Energy Storage, Год журнала: 2024, Номер 108, С. 114943 - 114943
Опубликована: Дек. 20, 2024
Язык: Английский
Процитировано
0