Expert Systems with Applications, Год журнала: 2025, Номер unknown, С. 128126 - 128126
Опубликована: Май 1, 2025
Язык: Английский
Expert Systems with Applications, Год журнала: 2025, Номер unknown, С. 128126 - 128126
Опубликована: Май 1, 2025
Язык: Английский
Energies, Год журнала: 2025, Номер 18(5), С. 1068 - 1068
Опубликована: Фев. 22, 2025
Lithium-ion batteries (LIBs) are widely used in the fields of consumer electronics, new energy vehicles, and grid storage due to their high density long cycle life. However, how effectively evaluate State Charge (SOC), Health (SOH), overcharging behavior has become a key issue improving battery safety lifespan. Acoustic sensing technology, as an advanced non-destructive monitoring method, achieves real-time internal state accurate evaluation parameters through ultrasonic testing technology acoustic emission technology. This article systematically reviews research progress SOC, SOH, overcharge LIBs, analyzes its working principle application advantages, explores future optimization directions industrialization prospects. provides important support for building efficient safe management systems.
Язык: Английский
Процитировано
8Ionics, Год журнала: 2025, Номер 31(3), С. 2337 - 2349
Опубликована: Янв. 14, 2025
Язык: Английский
Процитировано
2Journal of Energy Storage, Год журнала: 2025, Номер 123, С. 116808 - 116808
Опубликована: Май 1, 2025
Язык: Английский
Процитировано
1Journal of Power Sources, Год журнала: 2025, Номер 635, С. 236508 - 236508
Опубликована: Фев. 16, 2025
Язык: Английский
Процитировано
0ACS Omega, Год журнала: 2025, Номер 10(9), С. 9381 - 9389
Опубликована: Фев. 26, 2025
With the rapid development of Internet Things (IoT) and 5G technology, there has been a considerable increase in demand for self-powered flexible sensors. However, existing solutions frequently prove inadequate regarding flexibility, energy efficiency, accuracy with which gestures can be recognized, particularly noncontact operation scenarios. As result, is need innovative developments sensor technology. This study proposes an artificial intelligence-based gesture recognition system comprising triboelectric ring, Arduino signal processing module, deep learning module. Our approach enables direct reading signals by through integrated circuits, thereby maintaining output voltage within input range commonly used microcontrollers. The integration technology sophisticated methodologies, notably utilization one-dimensional convolutional neural network (CNN), enabled that exhibits rate exceeding 95% 12 distinct gestures. demonstrates prospective utility sensors realms recognition, wearable human–machine interaction.
Язык: Английский
Процитировано
0Journal of Alloys and Compounds, Год журнала: 2025, Номер unknown, С. 179459 - 179459
Опубликована: Фев. 1, 2025
Язык: Английский
Процитировано
0Measurement, Год журнала: 2025, Номер unknown, С. 117405 - 117405
Опубликована: Март 1, 2025
Язык: Английский
Процитировано
0Journal of Power Sources, Год журнала: 2025, Номер 643, С. 236982 - 236982
Опубликована: Апрель 14, 2025
Язык: Английский
Процитировано
0Frontiers of Chemical Science and Engineering, Год журнала: 2025, Номер 19(6)
Опубликована: Апрель 20, 2025
Язык: Английский
Процитировано
0Expert Systems with Applications, Год журнала: 2025, Номер unknown, С. 128126 - 128126
Опубликована: Май 1, 2025
Язык: Английский
Процитировано
0