Joint Optimization of Delay and Energy in Partial Offloading Using Dual-Population Replicator Dynamics DOI

Mohammad Hassan Khoobkar,

Mehdi Dehghan Takht Fooladi,

Mohammad Hossein Rezvani

и другие.

SSRN Electronic Journal, Год журнала: 2022, Номер unknown

Опубликована: Янв. 1, 2022

Due to the growing demand for delay-sensitive computing, partial offloading has recently attracted significant attention research community. The most appropriate mathematical tool modeling behavior of selfish agents when interacting with each other is game theory. Because solutions proposed in previous classical theory consider user as a player, they may not be scalable. Moreover, dynamic changes fog environment have been ignored almost all research. This paper presents dual-population using replicator dynamics considering interaction between and computing environment. Unlike theory, here, strategy selected offload computation viewed player. method can very efficiently model growing/shrinking two populations CPU cycles on both network sides. We obtain conditions under which latency energy consumption are jointly minimized compared full local execution modes. simulation results show superiority over baseline state-of-the-art techniques saving time energy.

Язык: Английский

Link prediction in multilayer networks using weighted reliable local random walk algorithm DOI
Zhiping Luo, Jian Yin, Guangquan Lu

и другие.

Expert Systems with Applications, Год журнала: 2024, Номер 247, С. 123304 - 123304

Опубликована: Янв. 23, 2024

Язык: Английский

Процитировано

9

Optimal placement of applications in the fog environment: A systematic literature review DOI
Mohammad Mainul Islam, Fahimeh Ramezani, Haiyan Lu

и другие.

Journal of Parallel and Distributed Computing, Год журнала: 2022, Номер 174, С. 46 - 69

Опубликована: Дек. 9, 2022

Язык: Английский

Процитировано

18

Joint optimization of delay and energy in partial offloading using Dual-population replicator dynamics DOI

Mohammad Hassan Khoobkar,

Mehdi Dehghan Takht Fooladi,

Mohammad Hossein Rezvani

и другие.

Expert Systems with Applications, Год журнала: 2022, Номер 216, С. 119417 - 119417

Опубликована: Дек. 9, 2022

Язык: Английский

Процитировано

15

IOTD: intelligent offloading of tasks with deadlines in edge-fog-cloud computing environment using hybrid approach DOI

Posham Bhargava Reddy,

Chapram Sudhakar

Cluster Computing, Год журнала: 2024, Номер 27(7), С. 9873 - 9885

Опубликована: Апрель 30, 2024

Язык: Английский

Процитировано

3

Speech cryptography algorithms: utilizing frequency and time domain techniques merging DOI
Osama S. Faragallah,

M. Farouk,

Hala S. El‐sayed

и другие.

Journal of Ambient Intelligence and Humanized Computing, Год журнала: 2024, Номер 15(10), С. 3617 - 3649

Опубликована: Авг. 9, 2024

Язык: Английский

Процитировано

3

A learning automata based approach for module placement in fog computing environment DOI

Yousef Abofathi,

Babak Anari, Mohammad Masdari

и другие.

Expert Systems with Applications, Год журнала: 2023, Номер 237, С. 121607 - 121607

Опубликована: Сен. 15, 2023

Язык: Английский

Процитировано

5

A Distributed Resource Sharing Mechanism in Edge-Enabled IIoT Systems DOI

Huan Liu,

Shiyong Li, Wenzhe Li

и другие.

IEEE Internet of Things Journal, Год журнала: 2023, Номер 11(8), С. 14296 - 14312

Опубликована: Дек. 13, 2023

The Industrial Internet of Things (IIoT) has revolutionized industrial processes by facilitating the seamless connectivity and communication devices systems within environments. As a critical component, edge computing provides flexible data sensing real-time processing services, which facilitates comprehensive enhancement for IIoT systems. However, due to tremendous increase in limited resources servers, ensuring efficient resource sharing while prioritizing benefits both parties would be driving force edge-enabled In this work, we propose distributed mechanism objective proposed is maximizing social welfare optimizes utility device cost server simultaneously. particular, integrate soft-defined network (SDN) technique into threelayer framework support agile management formulate optimization models multiple scenarios. Furthermore, design alternating direction method multipliers (ADMMs) algorithms appropriately decompose primal problem subproblems explore their interactive relationships requesting using characteristic ADMM. Finally, extensive performance evaluations are conducted under scenarios manifest effectiveness reliability terms convergence rate, fault tolerance.

Язык: Английский

Процитировано

5

Enhanced Clustering MAC Protocol Based on Learning Automata for UV Networks DOI Creative Commons
Cheng Li, Zhiyong Xu, Jingyuan Wang

и другие.

Photonics, Год журнала: 2024, Номер 11(4), С. 340 - 340

Опубликована: Апрель 7, 2024

Ultraviolet (UV) networks are widely applied in complex electromagnetic environments. Designing an efficient multi-node medium access control (MAC) protocol for these is important. In this study, we proposed enhanced clustering time division multiple (TDMA) MAC based on and learning automata (LA). Subsequently, the effects of network topology, class service, number cluster nodes performance under were analyzed. Then, was compared with TDMA system. Results revealed that it obtained a better performance, proving its suitability UV networking.

Язык: Английский

Процитировано

1

Federated learning inspired Antlion based orchestration for Edge computing environment DOI Creative Commons

H. S. Madhusudhan,

Punit Gupta

PLoS ONE, Год журнала: 2024, Номер 19(6), С. e0304067 - e0304067

Опубликована: Июнь 4, 2024

Edge computing is a scalable, modern, and distributed architecture that brings computational workloads closer to smart gateways or devices. This model delivers IoT (Internet of Things) computations processes the requests from network. In diverse independent environment like Fog-Edge, resource management critical issue. Hence, scheduling vital process enhance efficiency allocation resources properly tasks. The manuscript proposes an Artificial Neural Network (ANN) inspired Antlion algorithm for task orchestration environments. Its aim utilization reduce energy consumption. Comparative analysis with different algorithms shows proposed balances load on layer, which results in lower cloud, improves power consumption, CPU utilization, network reduces average waiting time requests. tested healthcare application environment. evaluation outperforms existing fuzzy logic algorithms. performance ANN based approach evaluated using metrics, respectively. It logic, round robin algorithm. technique achieves cloud consumption improvement 95.94%, 16.79%, 19.85% environment, 10.64% 23.33% decreases by 96% compared 1.4% round-robin

Язык: Английский

Процитировано

1

Learning automaton-based energy-efficient and fault-tolerant topology evolution algorithm for underwater acoustic sensor network DOI

Mingru Dong,

Haibin Li, Yongtao Hu

и другие.

Journal of Network and Computer Applications, Год журнала: 2023, Номер 217, С. 103690 - 103690

Опубликована: Июнь 19, 2023

Язык: Английский

Процитировано

3