A Novel Deterministic Probabilistic Forecasting Framework for Gold Price with a New Pandemic Index Based on Quantile Regression Deep Learning and Multi-Objective Optimization DOI Creative Commons
Yan Wang, Tong Lin

Mathematics, Год журнала: 2023, Номер 12(1), С. 29 - 29

Опубликована: Дек. 22, 2023

The significance of precise gold price forecasting is accentuated by its financial attributes, mirroring global economic conditions, market uncertainties, and investor risk aversion. However, predicting the challenging due to inherent volatility, influenced multiple factors, such as COVID-19, crises, geopolitical issues, fluctuations in other metals energy prices. These complexities often lead non-stationary time series, rendering traditional series modeling methods inadequate. Our paper presents a multi-objective optimization algorithm that refines interval prediction framework with quantile regression deep learning response this issue. This comprehensively responds gold’s dynamics uncertainties screening process various including pandemic-related indices, US dollar index, prices commodities. deep-learning models optimized algorithms deliver robust, interpretable, highly accurate predictions for handling non-linear relationships complex data structures enhance overall predictive performance. results demonstrate QRBiLSTM model, using MOALO algorithm, delivers excellent composite indicator AIS reaches −15.6240 −11.5581 at 90% 95% confidence levels, respectively. underscores model’s high accuracy potential provide valuable insights assessing future trends deterministic probabilistic captures new pandemic index sets benchmark volatile commodities like gold.

Язык: Английский

A novel chaotic time series wind power point and interval prediction method based on data denoising strategy and improved coati optimization algorithm DOI
Chao Wang, Lin Hon, Ming Yang

и другие.

Chaos Solitons & Fractals, Год журнала: 2024, Номер 187, С. 115442 - 115442

Опубликована: Авг. 29, 2024

Язык: Английский

Процитировано

5

Hybrid modeling with data enhanced driven learning algorithm for smart generation control in multi-area integrated energy systems with high proportion renewable energy DOI
Linfei Yin, Da Zheng

Expert Systems with Applications, Год журнала: 2024, Номер 261, С. 125530 - 125530

Опубликована: Окт. 9, 2024

Язык: Английский

Процитировано

5

A novel combined probabilistic load forecasting system integrating hybrid quantile regression and knee improved multi-objective optimization strategy DOI
Yi Yang, Qianyi Xing, Kang Wang

и другие.

Applied Energy, Год журнала: 2023, Номер 356, С. 122341 - 122341

Опубликована: Ноя. 25, 2023

Язык: Английский

Процитировано

11

Data generation scheme for photovoltaic power forecasting using Wasserstein GAN with gradient penalty combined with autoencoder and regression models DOI
Sungwoo Park, Jaeuk Moon, Eenjun Hwang

и другие.

Expert Systems with Applications, Год журнала: 2024, Номер 257, С. 125012 - 125012

Опубликована: Авг. 6, 2024

Язык: Английский

Процитировано

4

A multi-input and dual-output wind speed interval forecasting system based on constrained multi-objective optimization problem and model averaging DOI
Mengzheng Lv, Jianzhou Wang, Shuai Wang

и другие.

Energy Conversion and Management, Год журнала: 2024, Номер 319, С. 118909 - 118909

Опубликована: Авг. 26, 2024

Язык: Английский

Процитировано

4

Probabilistic prediction system based on quantile deep learning model and multi-level information recognition DOI

Linyue Zhang,

Jianzhou Wang, J Li

и другие.

Expert Systems with Applications, Год журнала: 2025, Номер 272, С. 126734 - 126734

Опубликована: Фев. 6, 2025

Язык: Английский

Процитировано

0

Constraint first, shrinking next: A hybrid photovoltaic generation forecasting framework based on ensemble learning and multi-strategy improved optimizer DOI

Jionghao Zhu,

Jie Liu, Xiaoying Tang

и другие.

Computers & Industrial Engineering, Год журнала: 2025, Номер unknown, С. 111022 - 111022

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

0

BUILDING-INTEGRATED PHOTOVOLTAICS THROUGH MULTI-PHYSICS SYNERGIES: A CRITICAL REVIEW OF OPTICAL, THERMAL, AND ELECTRICAL MODELS IN FACADE APPLICATIONS DOI

Dawei Ruan,

Cheng Fan, Mingwei Hu

и другие.

Renewable Energy, Год журнала: 2025, Номер 251, С. 123332 - 123332

Опубликована: Май 8, 2025

Язык: Английский

Процитировано

0

Amplify seasonality, prioritize meteorological: Strengthening seasonal correlation in photovoltaic forecasting with dual-layer hierarchical attention DOI
Yunbo Niu, Jianzhou Wang, Ziyuan Zhang

и другие.

Applied Energy, Год журнала: 2025, Номер 394, С. 126104 - 126104

Опубликована: Май 23, 2025

Язык: Английский

Процитировано

0

Studying the evolutions, differences, and water security impacts of water demands under shared socioeconomic pathways: A SEMs-bootstrap-ANN approach applied to Sichuan Province DOI
Li Mo,

Sijing Lou,

Yongqiang Wang

и другие.

Journal of Environmental Management, Год журнала: 2023, Номер 349, С. 119455 - 119455

Опубликована: Окт. 31, 2023

Язык: Английский

Процитировано

8