Automation in Construction, Год журнала: 2023, Номер 156, С. 105127 - 105127
Опубликована: Окт. 31, 2023
Язык: Английский
Automation in Construction, Год журнала: 2023, Номер 156, С. 105127 - 105127
Опубликована: Окт. 31, 2023
Язык: Английский
Advanced Engineering Informatics, Год журнала: 2023, Номер 57, С. 102004 - 102004
Опубликована: Июнь 8, 2023
Язык: Английский
Процитировано
155Expert Systems with Applications, Год журнала: 2023, Номер 237, С. 121723 - 121723
Опубликована: Сен. 22, 2023
Язык: Английский
Процитировано
55Applied Energy, Год журнала: 2025, Номер 383, С. 125339 - 125339
Опубликована: Янв. 15, 2025
Язык: Английский
Процитировано
3Computers & Industrial Engineering, Год журнала: 2023, Номер 187, С. 109815 - 109815
Опубликована: Дек. 4, 2023
Hyper-heuristics are search techniques for selecting, generating, and sequencing (meta)-heuristics to solve challenging optimization problems. They differ from traditional methods, which primarily employ space-based strategies. Due the remarkable performance of hyper-heuristics in multi-objective machine learning-based optimization, there has been an increasing interest this field. With a fresh perspective, our work extends current taxonomy presents overview most significant hyper-heuristic studies last two decades. Four categories under we analyze selection (including learning techniques), low-level heuristics, target problems, parallel hyper-heuristics. Future research prospects, trends, prospective fields study also explored.
Язык: Английский
Процитировано
26Results in Engineering, Год журнала: 2025, Номер unknown, С. 103951 - 103951
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
1Alexandria Engineering Journal, Год журнала: 2023, Номер 81, С. 469 - 488
Опубликована: Сен. 22, 2023
There are many tricky optimization problems in real life, and metaheuristic algorithms the most effective way to solve at a lower cost. The dung beetle algorithm (DBO) is more innovative proposed 2022, which affected by action of beetles such as ball rolling, foraging, reproduction. Therefore, A based on quasi-oppositional learning Q-learning (QOLDBO). First, quantum state update idea cleverly integrated into increase randomness generated population. And best behavior pattern selected adding rolling stage improve search effect. In addition, variable spiral local domain method make up for shortage developing only around neighborhood optimum. For optimal solution each iteration, dimensional adaptive Gaussian variation retained. Experimental performance tests show that QOLDBO performs well both benchmark test functions CEC 2017. Simultaneously, validity verified several classical practical application engineering problems.
Язык: Английский
Процитировано
22Expert Systems with Applications, Год журнала: 2023, Номер 235, С. 121212 - 121212
Опубликована: Авг. 18, 2023
Язык: Английский
Процитировано
21Expert Systems with Applications, Год журнала: 2024, Номер 255, С. 124765 - 124765
Опубликована: Июль 17, 2024
Язык: Английский
Процитировано
8Mathematics and Computers in Simulation, Год журнала: 2024, Номер 221, С. 94 - 134
Опубликована: Фев. 17, 2024
Язык: Английский
Процитировано
7Computer Methods in Applied Mechanics and Engineering, Год журнала: 2024, Номер 434, С. 117588 - 117588
Опубликована: Ноя. 29, 2024
Язык: Английский
Процитировано
7