Online multi-objective optimization for tunnel boring machine segment assembly considering stress concentration DOI
Yongsheng Li,

Qing Sun,

Limao Zhang

и другие.

Automation in Construction, Год журнала: 2023, Номер 156, С. 105127 - 105127

Опубликована: Окт. 31, 2023

Язык: Английский

DETDO: An adaptive hybrid dandelion optimizer for engineering optimization DOI
Gang Hu,

Yixuan Zheng,

Laith Abualigah

и другие.

Advanced Engineering Informatics, Год журнала: 2023, Номер 57, С. 102004 - 102004

Опубликована: Июнь 8, 2023

Язык: Английский

Процитировано

155

A DQL-NSGA-III algorithm for solving the flexible job shop dynamic scheduling problem DOI
Hongtao Tang, Xiao Yu,

Wei Zhang

и другие.

Expert Systems with Applications, Год журнала: 2023, Номер 237, С. 121723 - 121723

Опубликована: Сен. 22, 2023

Язык: Английский

Процитировано

55

Study on a new metaheuristic algorithm – Tribal intelligent evolution optimization and its application in optimal control of cooling plants DOI
Ye Yao,

Xiaoxi Hong,

Lei Xiong

и другие.

Applied Energy, Год журнала: 2025, Номер 383, С. 125339 - 125339

Опубликована: Янв. 15, 2025

Язык: Английский

Процитировано

3

Hyper-heuristics: A survey and taxonomy DOI Creative Commons
Tansel Dökeroğlu, Tayfun Küçükyılmaz,

El‐Ghazali Talbi

и другие.

Computers & Industrial Engineering, Год журнала: 2023, Номер 187, С. 109815 - 109815

Опубликована: Дек. 4, 2023

Hyper-heuristics are search techniques for selecting, generating, and sequencing (meta)-heuristics to solve challenging optimization problems. They differ from traditional methods, which primarily employ space-based strategies. Due the remarkable performance of hyper-heuristics in multi-objective machine learning-based optimization, there has been an increasing interest this field. With a fresh perspective, our work extends current taxonomy presents overview most significant hyper-heuristic studies last two decades. Four categories under we analyze selection (including learning techniques), low-level heuristics, target problems, parallel hyper-heuristics. Future research prospects, trends, prospective fields study also explored.

Язык: Английский

Процитировано

26

A Robust Automatic Generation Control System based on Hybrid Aquila Optimizer-Sine Cosine Algorithm DOI Creative Commons
Sadeq D. Al-Majidi,

Al hussein M. Alturfi,

Mohammed Kh. Al-Nussairi

и другие.

Results in Engineering, Год журнала: 2025, Номер unknown, С. 103951 - 103951

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

1

A quasi-oppositional learning of updating quantum state and Q-learning based on the dung beetle algorithm for global optimization DOI Creative Commons
Zhendong Wang, Lili Huang, Shuxin Yang

и другие.

Alexandria Engineering Journal, Год журнала: 2023, Номер 81, С. 469 - 488

Опубликована: Сен. 22, 2023

There are many tricky optimization problems in real life, and metaheuristic algorithms the most effective way to solve at a lower cost. The dung beetle algorithm (DBO) is more innovative proposed 2022, which affected by action of beetles such as ball rolling, foraging, reproduction. Therefore, A based on quasi-oppositional learning Q-learning (QOLDBO). First, quantum state update idea cleverly integrated into increase randomness generated population. And best behavior pattern selected adding rolling stage improve search effect. In addition, variable spiral local domain method make up for shortage developing only around neighborhood optimum. For optimal solution each iteration, dimensional adaptive Gaussian variation retained. Experimental performance tests show that QOLDBO performs well both benchmark test functions CEC 2017. Simultaneously, validity verified several classical practical application engineering problems.

Язык: Английский

Процитировано

22

Optimal power flow using a hybridization algorithm of arithmetic optimization and aquila optimizer DOI
Masoud Ahmadipour, Muhammad Murtadha Othman, Rui Bo

и другие.

Expert Systems with Applications, Год журнала: 2023, Номер 235, С. 121212 - 121212

Опубликована: Авг. 18, 2023

Язык: Английский

Процитировано

21

Resource scheduling optimization for industrial operating system using deep reinforcement learning and WOA algorithm DOI
Ting Shu, Zhijie Pan, Zuohua Ding

и другие.

Expert Systems with Applications, Год журнала: 2024, Номер 255, С. 124765 - 124765

Опубликована: Июль 17, 2024

Язык: Английский

Процитировано

8

Improving teaching-learning-based optimization algorithm with golden-sine and multi-population for global optimization DOI

Aosheng Xing,

Yong Chen,

Jinyi Suo

и другие.

Mathematics and Computers in Simulation, Год журнала: 2024, Номер 221, С. 94 - 134

Опубликована: Фев. 17, 2024

Язык: Английский

Процитировано

7

Integrating Differential Evolution into Gazelle Optimization for advanced global optimization and engineering applications DOI Creative Commons
Saptadeep Biswas, Gyan Singh, Biswajit Maiti

и другие.

Computer Methods in Applied Mechanics and Engineering, Год журнала: 2024, Номер 434, С. 117588 - 117588

Опубликована: Ноя. 29, 2024

Язык: Английский

Процитировано

7