Ensemble Learning Based Time Series Forecasting for Clinical Datasets: A Study on Covid-19 Transmission and Emergency Department Arrival DOI
Abdullah Ammar Karcıoğlu

Опубликована: Янв. 1, 2023

The time series analysis of clinical data in health sciences is considered as an important study the field computer science. more accurate future predicted, vital measures for human can be taken and costs sector minimized. main purpose algorithms to predict a certain interval based on past data. However, instead using pure versions algorithms, it necessary combine these with new approaches improve their performance well-known increase prediction accuracy. Therefore, this study, twenty-six different have been used forecasting two datasets. top five best results chosen from algorithms. Then, ensemble learning model proposed by applying mean, median voting techniques datasets are COVID-19 transmission dataset Turkey hospital Emergency Department arrival Iowa. As result experimental studies, 96.10% accuracy value 92.88% ED achieved, respectively. It has observed that achieves better compared LSTM deep architecture. In conclusion, shown problems

Язык: Английский

Overcoming the semantic gap in the customer-to-manufacturer (C2M) platform: A soft prompts-based approach with pretrained language models DOI
Jianhui Huang, Yue Wang, Stephen C. H. Ng

и другие.

International Journal of Production Economics, Год журнала: 2024, Номер 272, С. 109248 - 109248

Опубликована: Апрель 18, 2024

Язык: Английский

Процитировано

10

Prompt-based contrastive learning to combat the COVID-19 infodemic DOI

Zifan Peng,

Mingchen Li, Yue Wang

и другие.

Machine Learning, Год журнала: 2025, Номер 114(1)

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

0

The Reconfiguration of the Public Sphere DOI

Paul Dobrescu,

Flavia Durach

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

0

Emotional classification in COVID-19: Analyzing Chinese microblogs with domain-adapted contrastive learning DOI
Nankai Lin, Hongyan Wu,

Aimin Yang

и другие.

Applied Soft Computing, Год журнала: 2025, Номер unknown, С. 112812 - 112812

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

0

Predicting retail shop number against roadside tree canopy shade: A national wide demonstration across 148 cities of China DOI
Yifeng Liu, Xinyu Wang, Hongxu Wei

и другие.

Journal of Retailing and Consumer Services, Год журнала: 2025, Номер 84, С. 104255 - 104255

Опубликована: Фев. 8, 2025

Язык: Английский

Процитировано

0

Identifying novel customer needs from user-generated content for product development using pre-trained language model DOI
Shaoqin Huang, Hu Qin, Tse-Tin Chan

и другие.

Journal of Engineering Design, Год журнала: 2025, Номер unknown, С. 1 - 21

Опубликована: Май 14, 2025

Язык: Английский

Процитировано

0

Mapping customer needs to product technical specifications in quality function deployment using graphical convolutional networks DOI
Xiang Li, Yue Wang, C.H. Wu

и другие.

Enterprise Information Systems, Год журнала: 2025, Номер unknown

Опубликована: Май 26, 2025

Язык: Английский

Процитировано

0

Ensemble learning with soft-prompted pretrained language models for fact checking DOI Creative Commons
Shaoqin Huang, Yue Wang, Eugene Y. Wong

и другие.

Natural Language Processing Journal, Год журнала: 2024, Номер 7, С. 100067 - 100067

Опубликована: Март 22, 2024

The infectious diseases, such as COVID-19 pandemic, has led to a surge of information on the internet, including misinformation, necessitating fact-checking tools. However, diseases related claims pose challenges due informal versus formal evidence and presence multiple aspects in claim. To address these issues, we propose soft prompt-based ensemble learning framework for fact checking. understand complex assertions social media texts, explore various prompt structures take advantage T5 language model, together. Soft prompts offer flexibility better generalization compared hard prompts. model captures linguistic cues contextual COVID-19-related data, thus enhances new claims. Experimental results demonstrate that improves accuracy provides promising approach combat misinformation during pandemic. In addition, method also shows great zero-shot capability can be applied checking problems.

Язык: Английский

Процитировано

2

Input-oriented demonstration learning for hybrid evidence fact verification DOI
Chonghao Chen, Wanyu Chen, Jianming Zheng

и другие.

Expert Systems with Applications, Год журнала: 2024, Номер 246, С. 123191 - 123191

Опубликована: Янв. 11, 2024

Язык: Английский

Процитировано

1

Cross-Domain Fake News Detection Using a Prompt-Based Approach DOI Creative Commons
Jawaher Alghamdi, Yuqing Lin, Suhuai Luo

и другие.

Future Internet, Год журнала: 2024, Номер 16(8), С. 286 - 286

Опубликована: Авг. 8, 2024

The proliferation of fake news poses a significant challenge in today’s information landscape, spanning diverse domains and topics undermining traditional detection methods confined to specific domains. In response, there is growing interest strategies for detecting cross-domain misinformation. However, machine learning (ML) approaches often struggle with the nuanced contextual understanding required accurate classification. To address these challenges, we propose novel contextualized prompt-based zero-shot approach utilizing pre-trained Generative Pre-trained Transformer (GPT) model (FND). contrast conventional fine-tuning reliant on extensive labeled datasets, our places particular emphasis refining prompt integration classification logic within model’s framework. This refinement enhances ability accurately classify across Additionally, adaptability allows customization tasks by modifying placeholders. Our research significantly advances demonstrating efficacy methodologies text classification, particularly scenarios limited training data. Through experimentation, illustrate that method effectively captures domain-specific features generalizes well other domains, surpassing existing models terms performance. These findings contribute ongoing efforts combat dissemination, environments severely data, such as online platforms.

Язык: Английский

Процитировано

1