Analyzing out-of-control signals of T2 control chart for compositional data using artificial neural networks DOI
Muhammad Imran, Hong-Liang Dai, Fatima Zaidi

и другие.

Expert Systems with Applications, Год журнала: 2023, Номер 238, С. 122165 - 122165

Опубликована: Окт. 20, 2023

Язык: Английский

A leakage detection method for hydrogen-blended natural gas pipelines in utility tunnels based on multi-task LSTM and CFD simulation DOI
Jinpeng Zhao, Yunlong Bai, Junlei Li

и другие.

International Journal of Hydrogen Energy, Год журнала: 2024, Номер 97, С. 1335 - 1347

Опубликована: Дек. 6, 2024

Язык: Английский

Процитировано

6

Real time hydrogen plume spatiotemporal evolution forecasting by using deep probabilistic spatial-temporal neural network DOI
Junjie Li,

Zonghao Xie,

Kang Liu

и другие.

International Journal of Hydrogen Energy, Год журнала: 2024, Номер 72, С. 878 - 891

Опубликована: Июнь 1, 2024

Язык: Английский

Процитировано

5

Structural damage detection and localization via an unsupervised anomaly detection method DOI Creative Commons

Jie Liu,

Qilin Li, Ling Li

и другие.

Reliability Engineering & System Safety, Год журнала: 2024, Номер 252, С. 110465 - 110465

Опубликована: Авг. 28, 2024

This study introduces an unsupervised machine learning framework for damage detection and localization in Structural Health Monitoring (SHM), leveraging dynamic graph convolutional neural networks Transformer networks. approach is specifically tailored to overcome the challenge of limited labeled data SHM, enabling precise analysis feature synthesis from sensor-derived time series accurate identification. Incorporating a novel 'localization score' enhances framework's precision pinpointing structural damages by integrating data-driven insights with physics-informed understanding dynamics. Extensive validations on diverse structures, including benchmark steel structure real-world cable-stayed bridge, underscore effectiveness anomaly localization, showcasing its potential safeguard critical infrastructure through advanced data-effective techniques.

Язык: Английский

Процитировано

5

Dynamic response and performance assessment of subsea sandwich pipelines with different interlayer subjected to underwater explosion DOI
Hong Lin,

Hao Xu,

Lei Yang

и другие.

Process Safety and Environmental Protection, Год журнала: 2024, Номер 185, С. 708 - 725

Опубликована: Март 16, 2024

Язык: Английский

Процитировано

4

Tank pool fire domino effect prevention by inherently safer layout planning: A techno-economic analytical index DOI
Guohua Chen, Honghao Chen, Caiyi Xiong

и другие.

Journal of Loss Prevention in the Process Industries, Год журнала: 2024, Номер 92, С. 105428 - 105428

Опубликована: Сен. 10, 2024

Язык: Английский

Процитировано

4

Efficient super-resolution of pipeline transient process modeling using the Fourier Neural Operator DOI

Junhua Gong,

Guoyun Shi, Shaobo Wang

и другие.

Energy, Год журнала: 2024, Номер 302, С. 131676 - 131676

Опубликована: Май 20, 2024

Язык: Английский

Процитировано

3

Leak identification and quantification in gas network using operational data and deep learning framework DOI Creative Commons
Elham Ebrahimi,

Mohammadrahim Kazemzadeh,

Antonio Ficarella

и другие.

Sustainable Energy Grids and Networks, Год журнала: 2024, Номер 39, С. 101496 - 101496

Опубликована: Авг. 13, 2024

In this study, we introduce an innovative deep learning framework designed to achieve precise detection, localization, and rate estimation of gas distribution pipeline system leakages. Our method surpasses conventional statistical approaches, particularly those based on Bayesian inference, by accommodating the system's intricate behaviors, including variable usage production from both sources sinks. Notably, our approach demonstrates remarkable accuracy in localizing leakages even amidst multiple occurrences within system. Specifically, achieving over 98% single-leakage scenarios underscores its effectiveness. Furthermore, through data augmentation involving introduction noise into training dataset, significantly enhance model's performance, when tested against real-world-like noisy data. This study not only showcases efficacy proposed but also adaptability robustness addressing complex challenges systems.

Язык: Английский

Процитировано

3

Proposing a Method Using Graph Attention Networks for Predicting Water Injection and Energy Consumption: A Case Study of a Surface Oil and Gas Gathering Station in Jilin Oilfield DOI

C. Li,

Daqian Liu, Xiaoping Li

и другие.

Energy & Fuels, Год журнала: 2025, Номер unknown

Опубликована: Янв. 28, 2025

Язык: Английский

Процитировано

0

Microleakage localization method for subsea production manifold based on transient pressure wave DOI
Xuelin Liu, Baoping Cai, Yi Jiang

и другие.

Energy, Год журнала: 2025, Номер unknown, С. 135695 - 135695

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

0

Hierarchical leakage localization method for complex heterogeneous manifold DOI
Xuelin Liu, Baoping Cai, Yiliu Liu

и другие.

Mechanical Systems and Signal Processing, Год журнала: 2025, Номер 230, С. 112616 - 112616

Опубликована: Апрель 5, 2025

Язык: Английский

Процитировано

0