Expert Systems with Applications, Год журнала: 2023, Номер 238, С. 122165 - 122165
Опубликована: Окт. 20, 2023
Язык: Английский
Expert Systems with Applications, Год журнала: 2023, Номер 238, С. 122165 - 122165
Опубликована: Окт. 20, 2023
Язык: Английский
International Journal of Hydrogen Energy, Год журнала: 2024, Номер 97, С. 1335 - 1347
Опубликована: Дек. 6, 2024
Язык: Английский
Процитировано
6International Journal of Hydrogen Energy, Год журнала: 2024, Номер 72, С. 878 - 891
Опубликована: Июнь 1, 2024
Язык: Английский
Процитировано
5Reliability Engineering & System Safety, Год журнала: 2024, Номер 252, С. 110465 - 110465
Опубликована: Авг. 28, 2024
This study introduces an unsupervised machine learning framework for damage detection and localization in Structural Health Monitoring (SHM), leveraging dynamic graph convolutional neural networks Transformer networks. approach is specifically tailored to overcome the challenge of limited labeled data SHM, enabling precise analysis feature synthesis from sensor-derived time series accurate identification. Incorporating a novel 'localization score' enhances framework's precision pinpointing structural damages by integrating data-driven insights with physics-informed understanding dynamics. Extensive validations on diverse structures, including benchmark steel structure real-world cable-stayed bridge, underscore effectiveness anomaly localization, showcasing its potential safeguard critical infrastructure through advanced data-effective techniques.
Язык: Английский
Процитировано
5Process Safety and Environmental Protection, Год журнала: 2024, Номер 185, С. 708 - 725
Опубликована: Март 16, 2024
Язык: Английский
Процитировано
4Journal of Loss Prevention in the Process Industries, Год журнала: 2024, Номер 92, С. 105428 - 105428
Опубликована: Сен. 10, 2024
Язык: Английский
Процитировано
4Energy, Год журнала: 2024, Номер 302, С. 131676 - 131676
Опубликована: Май 20, 2024
Язык: Английский
Процитировано
3Sustainable Energy Grids and Networks, Год журнала: 2024, Номер 39, С. 101496 - 101496
Опубликована: Авг. 13, 2024
In this study, we introduce an innovative deep learning framework designed to achieve precise detection, localization, and rate estimation of gas distribution pipeline system leakages. Our method surpasses conventional statistical approaches, particularly those based on Bayesian inference, by accommodating the system's intricate behaviors, including variable usage production from both sources sinks. Notably, our approach demonstrates remarkable accuracy in localizing leakages even amidst multiple occurrences within system. Specifically, achieving over 98% single-leakage scenarios underscores its effectiveness. Furthermore, through data augmentation involving introduction noise into training dataset, significantly enhance model's performance, when tested against real-world-like noisy data. This study not only showcases efficacy proposed but also adaptability robustness addressing complex challenges systems.
Язык: Английский
Процитировано
3Energy & Fuels, Год журнала: 2025, Номер unknown
Опубликована: Янв. 28, 2025
Язык: Английский
Процитировано
0Energy, Год журнала: 2025, Номер unknown, С. 135695 - 135695
Опубликована: Март 1, 2025
Язык: Английский
Процитировано
0Mechanical Systems and Signal Processing, Год журнала: 2025, Номер 230, С. 112616 - 112616
Опубликована: Апрель 5, 2025
Язык: Английский
Процитировано
0