An optimized LSTM model for clean coal ash content prediction in dense medium separation scenarios on the basis of the dual decomposition method DOI
Yongqi Liu,

Yuping Fan,

Xiaomin Ma

и другие.

International Journal of Coal Preparation and Utilization, Год журнала: 2024, Номер unknown, С. 1 - 26

Опубликована: Дек. 10, 2024

To increase the accuracy of clean coal ash content prediction during dense medium separation process and address time lag issue encountered when measuring content, a model based on WaOA-VMD-SGMD-WaOA-LSTM was proposed. The adopts dual decomposition techniques optimized Variational Mode Decomposition (VMD) Symplectic Geometric (SGMD), which can completely decompose original data, uses Walrus optimization algorithm (WaOA) to optimize hyperparameters Long Short-Term Memory (LSTM) model. In construction, characteristic data ore (𝑍2), raw (𝑍3), heavy mesoporous cyclone pressure (𝑍4), suspension density (𝑍5), magnetic (𝑍6) were combined with decomposed cleaned grouping S-IMF0~S-IMFn, CO-IMF1, CO-IMF2 as input variables construct multiple LSTM models. Finally, value is superimposed realize content. Based industrial preparation plant in Shanxi, China, results show that coefficient determination (R2) 0.9974. After adding secondary technology, average absolute error reduced by 60.99% compared single strategy.

Язык: Английский

The application of strategy based on LSTM for the short-term prediction of PM2.5 in city DOI
Min‐Der Lin, Ping‐Yu Liu, Chi‐Wei Huang

и другие.

The Science of The Total Environment, Год журнала: 2023, Номер 906, С. 167892 - 167892

Опубликована: Окт. 16, 2023

Язык: Английский

Процитировано

18

Dam deformation prediction model based on the multiple decomposition and denoising methods DOI

Dongyan Jia,

Jie Yang,

Guanglei Sheng

и другие.

Measurement, Год журнала: 2024, Номер 238, С. 115268 - 115268

Опубликована: Июль 16, 2024

Язык: Английский

Процитировано

7

Interval prediction of crude oil spot price volatility: An improved hybrid model integrating decomposition strategy, IESN and ARIMA DOI

Jinliang Zhang,

ziyi Liu

Expert Systems with Applications, Год журнала: 2024, Номер 252, С. 124195 - 124195

Опубликована: Май 14, 2024

Язык: Английский

Процитировано

4

LSTM-SVM-Weibull modeling for decommissioning amount prediction of power batteries based on attention mechanism and ISPBO algorithm DOI

Mengna Zhao,

S. Chen

Applied Intelligence, Год журнала: 2025, Номер 55(4)

Опубликована: Янв. 13, 2025

Язык: Английский

Процитировано

0

Using Signal Decomposition Methods and Deep Learning Approaches to Forecast Bitcoin Price DOI

Chun-Li Tsai,

Mu‐Yen Chen,

Tsung-Yi Tsai

и другие.

Computational Economics, Год журнала: 2025, Номер unknown

Опубликована: Март 5, 2025

Язык: Английский

Процитировано

0

The hybrid velocity prediction model for pipeline detection based on bidirectional long short-term memory and an improved attention mechanism DOI

Junjie Ma,

Yiming Li, Zhongchao Zhang

и другие.

Engineering Applications of Artificial Intelligence, Год журнала: 2025, Номер 153, С. 110855 - 110855

Опубликована: Апрель 23, 2025

Язык: Английский

Процитировано

0

Long, short, and medium terms wind speed prediction model based on LSTM optimized by improved moth flame optimization algorithm DOI
Runze Li, Jianzhou Wang, Jingrui Li

и другие.

Environmental Science and Pollution Research, Год журнала: 2024, Номер 31(25), С. 37256 - 37282

Опубликована: Май 21, 2024

Язык: Английский

Процитировано

2

Cabin air dynamics: Unraveling the patterns and drivers of volatile organic compound distribution in vehicles DOI Creative Commons
Rui Zhang, Minglu Zhao, Hengwei Wang

и другие.

PNAS Nexus, Год журнала: 2024, Номер 3(7)

Опубликована: Июнь 28, 2024

Abstract Volatile organic compounds (VOCs) are ubiquitous in vehicle cabin environments, which can significantly impact the health of drivers and passengers, whereas quick intelligent prediction methods lacking. In this study, we firstly analyzed variations environmental parameters, VOC levels potential sources inside a new car during 7 summer workdays, indicating that formaldehyde had highest concentration about one third measurements exceeded standard limit for in-cabin air quality. Feature importance analysis reveals most important factor affecting emission behaviors is material surface temperature rather than temperature. By introducing attention mechanism ensemble strategy, present an LSTM-A-E deep learning model to predict concentrations 12 observed typical VOCs, together with other five models comparison. comparing prediction–observation discrepancies evaluation metrics, demonstrates better performance, more consistent field measurements. Extension developed predicting 10-day realistic residence further illustrates its excellent adaptation. This study probes not-well-explored dynamics via observation approaches, facilitating rapid exposure assessment VOCs micro-environment.

Язык: Английский

Процитировано

2

A hybrid Monte Carlo quantile EMD-LSTM method for satellite in-orbit temperature prediction and data uncertainty quantification DOI
XU Ying-chun, Wen Yao, Xiaohu Zheng

и другие.

Expert Systems with Applications, Год журнала: 2024, Номер 255, С. 124875 - 124875

Опубликована: Июль 26, 2024

Язык: Английский

Процитировано

2

Investigation on spatter characteristics of liquid phase and life span of submerged lance in the top-blown smelting process using hydraulic modelling DOI
Kai Yang,

Bo Yu,

Wuliang Yin

и другие.

Advanced Powder Technology, Год журнала: 2024, Номер 35(6), С. 104492 - 104492

Опубликована: Май 23, 2024

Язык: Английский

Процитировано

2