An Industrial Fault Diagnosis Method Based on Graph Attention Network DOI
Yan Hou, Jinggao Sun, Xing Liu

и другие.

Industrial & Engineering Chemistry Research, Год журнала: 2024, Номер 63(44), С. 19051 - 19062

Опубликована: Окт. 22, 2024

In the field of industrial production, precise and timely implementation fault diagnosis methods is crucial for improving product quality, enhancing operational safety, reducing downtime, minimizing losses. Recent studies have shown that most CNN-based models are more suitable handling Euclidean data such as images or videos but not dealing with non-Euclidean sensor data. practical scenarios, chemical process imbalanced patterns may lead data-driven to assign different attentions patterns. The SMOTE algorithm commonly used generate new data, it often tends overfit when there very few nearest neighbor samples. To address these issues, we designed an efficient model named KRGAT. fully utilize spatial structural information on employed graph attention networks (GATs), which well-suited Additionally, introduced top-k loss method select hard samples, thereby increasing weight Furthermore, improved DropMessage enhance model's accuracy robustness. Experimental results demonstrate our outperforms baseline under both balanced conditions.

Язык: Английский

A deep learning methodology based on adaptive multiscale CNN and enhanced highway LSTM for industrial process fault diagnosis DOI

Shuaiyu Zhao,

Yiling Duan, Nitin Roy

и другие.

Reliability Engineering & System Safety, Год журнала: 2024, Номер 249, С. 110208 - 110208

Опубликована: Май 29, 2024

Язык: Английский

Процитировано

26

Semi-supervised prototype network based on compact-uniform-sparse representation for rotating machinery few-shot class incremental fault diagnosis DOI
Yu Zhang, Dongying Han, Peiming Shi

и другие.

Expert Systems with Applications, Год журнала: 2024, Номер 255, С. 124660 - 124660

Опубликована: Дек. 1, 2024

Язык: Английский

Процитировано

9

Time-dependent earthquake-fire coupling fragility analysis under limited prior knowledge: A perspective from type-2 fuzzy probability DOI
Jinkun Men, Guohua Chen, Genserik Reniers

и другие.

Process Safety and Environmental Protection, Год журнала: 2024, Номер 183, С. 274 - 292

Опубликована: Янв. 6, 2024

Язык: Английский

Процитировано

5

Enhanced domain transfer deep fuzzy echo state network for rotating machinery fault diagnosis based on current signal DOI
Fei Jiang,

Weiqi Lin,

Shaohui Zhang

и другие.

Applied Soft Computing, Год журнала: 2024, Номер 165, С. 112033 - 112033

Опубликована: Авг. 1, 2024

Язык: Английский

Процитировано

5

An advanced cooperative multi-hive drone swarm system for global dynamic multi-source information awareness DOI
Jinkun Men, C.M. Zhao

Journal of Industrial Information Integration, Год журнала: 2024, Номер 40, С. 100608 - 100608

Опубликована: Апрель 8, 2024

Язык: Английский

Процитировано

4

Mixture-of-experts-based broad learning system and its applications DOI
Jing Wang, L. S. Nie, Junwei Duan

и другие.

Expert Systems with Applications, Год журнала: 2025, Номер unknown, С. 126389 - 126389

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

0

A federated learning based intelligent fault diagnosis framework for manufacturing processes with intraclass and interclass imbalance DOI
Liang Ma,

Fuzhong Shi,

Kaixiang Peng

и другие.

Measurement Science and Technology, Год журнала: 2025, Номер 36(3), С. 036203 - 036203

Опубликована: Фев. 10, 2025

Abstract Data based fault diagnosis technologies are important measures to improve the operation safety, stability, and reliability of manufacturing processes, which key entry points innovation powers promote intelligent as well efficiency. Class-balanced datasets often used for modeling by traditional data methods. However, in practical engineering applications, processes produce multiple classifications imbalance data, bringing great challenges promotions applications classical To this end, an framework is proposed issues on intraclass interclass have been specially focused. Specifically, considering non-independently identically distribution characteristics among different low recognition rates minority samples, a new cost sensitive convolutional neural network constructed base classifier coordinating cross entropy loss function with specific index. Subsequently, federated learning aggregation algorithm designed optimize participation weights local classifiers purpose cooperating model generalization performance. Finally, validity demonstrated typical hot rolling process forms data. The simulation results show that superior performance can be achieved compared some comparative algorithms each scenario.

Язык: Английский

Процитировано

0

Broad learning systems: An overview of recent advances, applications, challenges and future directions DOI
Yonghe Chu, Yan Guo, Weiping Ding

и другие.

Neurocomputing, Год журнала: 2025, Номер unknown, С. 130337 - 130337

Опубликована: Май 1, 2025

Язык: Английский

Процитировано

0

An adaptive imbalance robust graph embedding broad learning system fault diagnosis for imbalanced batch processes data DOI
Kai Liu, Xiaoqiang Zhao, Yongyong Hui

и другие.

Process Safety and Environmental Protection, Год журнала: 2024, Номер unknown

Опубликована: Окт. 1, 2024

Язык: Английский

Процитировано

1

Broad Distributed Game Learning for intelligent classification in rolling bearing fault diagnosis DOI
Haoran Liu, Haiyang Pan, Jinde Zheng

и другие.

Applied Soft Computing, Год журнала: 2024, Номер 167, С. 112470 - 112470

Опубликована: Ноя. 12, 2024

Язык: Английский

Процитировано

1