Advanced Engineering Informatics, Год журнала: 2024, Номер 63, С. 102923 - 102923
Опубликована: Ноя. 26, 2024
Язык: Английский
Advanced Engineering Informatics, Год журнала: 2024, Номер 63, С. 102923 - 102923
Опубликована: Ноя. 26, 2024
Язык: Английский
Applied Energy, Год журнала: 2024, Номер 368, С. 123499 - 123499
Опубликована: Май 25, 2024
Язык: Английский
Процитировано
7Engineering Applications of Artificial Intelligence, Год журнала: 2024, Номер 137, С. 109202 - 109202
Опубликована: Авг. 30, 2024
Язык: Английский
Процитировано
6Energy & Fuels, Год журнала: 2025, Номер unknown
Опубликована: Фев. 16, 2025
As global warming intensifies, geological carbon storage (GCS) in saline aquifers could play a vital role mitigating CO2 emissions. trapping occurs mainly through solubility and residual trapping, requiring an accurate prediction using (STI) (RTI) indices. Machine learning shows promise for estimating aquifers, but current models often lack effective feature selection, parameter optimization, advanced deep techniques, limiting their performance. This study develops predictive RTI STI CNN, LSTM, hybrid algorithms by combining them with growth optimization (GO) cuckoo (COA). An extensive data set of 6,811 points was analyzed, selection the nondominated sorting genetic algorithm random forest analysis. Model performance based on independent testing data, Shapley additive explanation (SHAP) analysis identified key features. For RTI, gas saturation (RGS), injection rate (IR), permeability (Perm), elapsed time (Te), porosity (Por), salinity (Sal) were most influential. Conversely, RGS, thickness (Th), Te, Perm, Sal, Por critical STI. The results confirm that DL outperformed standard models, metaheuristic enhancing accuracy generalization. CNN-COA model achieved lowest root-mean-square error (RMSE) (0.0011 training; 0.0035 testing) (0.0005 0.0028 predictions. SHAP revealed RGS Perm as least influential features predictions Th features, respectively, is innovative its integration methods selection. leads to improved GCS performance, robustness, adaptability diverse conditions.
Язык: Английский
Процитировано
0Computers & Structures, Год журнала: 2024, Номер 303, С. 107496 - 107496
Опубликована: Авг. 1, 2024
Язык: Английский
Процитировано
3Computers in Biology and Medicine, Год журнала: 2024, Номер 174, С. 108439 - 108439
Опубликована: Апрель 16, 2024
Язык: Английский
Процитировано
2Scientific Reports, Год журнала: 2024, Номер 14(1)
Опубликована: Окт. 27, 2024
Bone scintigraphy is recognized as an efficient diagnostic method for whole-body screening bone metastases. At the moment, scan image analysis primarily dependent on manual reading by nuclear medicine doctors. However, needs substantial experience and both stressful time-consuming. To address aforementioned issues, this work proposed a machine-learning technique that uses phases to detect scintigraphy. The first phase in model feature extraction it was conducted based integrating Mobile Vision Transformer (MobileViT) our framework capture highly complex representations from raw medical imagery using two primary components including ViT lightweight CNN featuring limited number of parameters. In addition, second named selection, Arithmetic Optimization Algorithm (AOA) being used improve Growth Optimizer (GO). We evaluate performance FS model, GOAOA set 18 UCI datasets. Additionally, applicability real-world application evaluated 2800 images (1400 normal 1400 abnormal). results statistical revealed algorithm outperforms other algorithms employed study.
Язык: Английский
Процитировано
2Automation in Construction, Год журнала: 2024, Номер 170, С. 105891 - 105891
Опубликована: Дек. 5, 2024
Язык: Английский
Процитировано
2Expert Systems with Applications, Год журнала: 2024, Номер 256, С. 124878 - 124878
Опубликована: Июль 31, 2024
Язык: Английский
Процитировано
1Applied Sciences, Год журнала: 2024, Номер 14(19), С. 9035 - 9035
Опубликована: Окт. 7, 2024
Accurately predicting the filtration volume (FV) in drilling fluid (DF) is crucial for avoiding problems such as a stuck pipe and minimizing DF impacts on formations during drilling. Traditional FV measurement relies human-centric experimental evaluation, which time-consuming. Recently, machine learning (ML) proved itself promising approach prediction. However, existing ML methods require time-consuming input variables, hindering semi-real-time monitoring of FV. Therefore, employing radial basis function neural network (RBFNN) multilayer extreme (MELM) algorithms integrated with growth optimizer (GO), predictive hybrid (HML) models are developed to reliably predict using only two easy-to-measure variables: density (FD) Marsh funnel viscosity (MFV). A 1260-record dataset from seventeen wells drilled oil gas fields (Iran) was used evaluate models. Results showed superior performance RBFNN-GO model, achieving root-mean-square error (RMSE) 0.6396 mL. Overfitting index (OFI), score, dependency, Shapley additive explanations (SHAP) analysis confirmed prediction model. In addition, low RMSE (0.3227 mL) RBFNN-NGO model unseen data different well within studied strong generalizability this rapid novel method.
Язык: Английский
Процитировано
1Applied Mathematical Modelling, Год журнала: 2024, Номер unknown, С. 115860 - 115860
Опубликована: Дек. 1, 2024
Язык: Английский
Процитировано
1