Topological search and gradient descent boosted Runge–Kutta optimiser with application to engineering design and feature selection DOI Creative Commons

Jinge Shi,

Yi Chen, Ali Asghar Heidari

и другие.

CAAI Transactions on Intelligence Technology, Год журнала: 2024, Номер unknown

Опубликована: Окт. 24, 2024

Abstract The Runge–Kutta optimiser (RUN) algorithm, renowned for its powerful optimisation capabilities, faces challenges in dealing with increasing complexity real‐world problems. Specifically, it shows deficiencies terms of limited local exploration capabilities and less precise solutions. Therefore, this research aims to integrate the topological search (TS) mechanism gradient rule (GSR) into framework RUN, introducing an enhanced algorithm called TGRUN improve performance original algorithm. TS employs a circular scheme conduct thorough solution regions surrounding each solution, enabling careful examination valuable areas enhancing algorithm’s effectiveness exploration. To prevent from becoming trapped optima, GSR also integrates descent principles direct wider investigation global space. This study conducted serious experiments on IEEE CEC2017 comprehensive benchmark function assess TGRUN. Additionally, evaluation includes engineering design feature selection problems serving as additional test assessing validation outcomes indicate significant improvement accuracy

Язык: Английский

Path planning for mobile robot based on improved ant colony Q-learning algorithm DOI
Meijie Cui, Maowei He, Hanning Chen

и другие.

International Journal on Interactive Design and Manufacturing (IJIDeM), Год журнала: 2025, Номер unknown

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

0

EABC-AS: Elite-driven artificial bee colony algorithm with adaptive population scaling DOI
R. Lin, Zesong Xu,

Liyang Yu

и другие.

Swarm and Evolutionary Computation, Год журнала: 2025, Номер 94, С. 101893 - 101893

Опубликована: Март 4, 2025

Язык: Английский

Процитировано

0

Enhancing Unmanned Marine Vehicle Path Planning: A Fractal-Enhanced Chaotic Grey Wolf and Differential Evolution Approach DOI
Chaoyang Zhu, Yassine Bouteraa, Mohammad Khishe

и другие.

Knowledge-Based Systems, Год журнала: 2025, Номер unknown, С. 113481 - 113481

Опубликована: Апрель 1, 2025

Язык: Английский

Процитировано

0

Energy-constrained collaborative path planning for heterogeneous amphibious unmanned surface vehicles in obstacle-cluttered environments DOI
Shihong Yin, Zhengrong Xiang

Ocean Engineering, Год журнала: 2025, Номер 330, С. 121241 - 121241

Опубликована: Апрель 19, 2025

Язык: Английский

Процитировано

0

Synergistic integration of metaheuristics and machine learning: latest advances and emerging trends DOI Creative Commons
Ruining Zhang, Jian Wang, Chanjuan Liu

и другие.

Artificial Intelligence Review, Год журнала: 2025, Номер 58(9)

Опубликована: Июнь 4, 2025

Язык: Английский

Процитировано

0

Scalable multi-agent path planning via wavelet-based KAN and enhanced feature extraction DOI

X.L. Liu,

Wang Peng,

Cui Ni

и другие.

The Journal of Supercomputing, Год журнала: 2025, Номер 81(8)

Опубликована: Июнь 5, 2025

Язык: Английский

Процитировано

0

MISAO: A Multi-Strategy Improved Snow Ablation Optimizer for Unmanned Aerial Vehicle Path Planning DOI Creative Commons

Cuiping Zhou,

Shaobo Li,

Cankun Xie

и другие.

Mathematics, Год журнала: 2024, Номер 12(18), С. 2870 - 2870

Опубликована: Сен. 14, 2024

The snow ablation optimizer (SAO) is a meta-heuristic technique used to seek the best solution for sophisticated problems. In response defects in SAO algorithm, which has poor search efficiency and prone getting trapped local optima, this article suggests multi-strategy improved (MISAO) optimizer. It employed unmanned aerial vehicle (UAV) path planning issue. To begin with, tent chaos elite reverse learning initialization strategies are merged extend diversity of population; secondly, greedy selection method deployed retain superior alternative solutions upcoming iteration; then, Harris hawk (HHO) strategy introduced enhance exploitation capability, prevents trapping partial ideals; finally, red-tailed (RTH) adopted perform global exploration, which, enhances optimization capability. comprehensively evaluate MISAO’s battery digital investigations executed using 23 test functions, results comparative analysis show that suggested algorithm high solving accuracy convergence velocity. Finally, effectiveness feasibility MISAO demonstrated UAV project.

Язык: Английский

Процитировано

3

Mathematical model and adaptive multi-objective evolutionary algorithm for cellular manufacturing with mixed production mode DOI
Lixin Cheng, Qiuhua Tang, Liping Zhang

и другие.

Swarm and Evolutionary Computation, Год журнала: 2024, Номер 86, С. 101545 - 101545

Опубликована: Март 22, 2024

Язык: Английский

Процитировано

2

Environment random interaction of rime optimization with Nelder-Mead simplex for parameter estimation of photovoltaic models DOI Creative Commons

Jinge Shi,

Yi Chen, Ali Asghar Heidari

и другие.

Scientific Reports, Год журнала: 2024, Номер 14(1)

Опубликована: Июль 8, 2024

Abstract As countries attach importance to environmental protection, clean energy has become a hot topic. Among them, solar energy, as one of the efficient and easily accessible sources, received widespread attention. An essential component in converting into electricity are cells. However, major optimization difficulty remains precisely effectively calculating parameters photovoltaic (PV) models. In this regard, study introduces an improved rime algorithm (RIME), namely ERINMRIME, which integrates Nelder-Mead simplex (NMs) with environment random interaction (ERI) strategy. later phases ERI strategy serves complementary mechanism for augmenting solution space exploration ability agent. By facilitating external interactions, method improves algorithm’s efficacy conducting global search by keeping it from becoming stuck local optima. Moreover, incorporating NMs, ERINMRIME enhances its do searches, leading exploration. To evaluate ERINMRIME's performance on PV models, conducted experiments four different models: single diode model (SDM), double (DDM), three-diode (TDM), module model. The experimental results show that reduces root mean square error SDM, DDM, TDM, models 46.23%, 59.32%, 61.49%, 23.95%, respectively, compared original RIME. Furthermore, nine classical algorithms. is remarkable competitor. Ultimately, evaluated across three distinct commercial while considering varying irradiation temperature conditions. superior existing similar algorithms Therefore, great potential identifying recognizing unknown

Язык: Английский

Процитировано

2

An Artificial Bee Colony Optimization Algorithms for Solving Fuzzy Capacitated Logistic Distribution Center Problem DOI Creative Commons

Yasser M Ayid,

Mohammad Zakaraia, Mohamed Meselhy Eltoukhy

и другие.

MethodsX, Год журнала: 2024, Номер 13, С. 102964 - 102964

Опубликована: Сен. 19, 2024

This paper presents a methodological approach to solving the fuzzy capacitated logistic distribution center problem, with focus on optimal selection of centers meet demands multiple plants. The are characterized by fixed costs and capacities, while plant modeled using triangular membership functions. problem is mathematically formulated converting into crisp values, providing structured framework for addressing uncertainty in planning. To support future research facilitate comparative analysis, 20 benchmark problems were generated, filling gap existing literature. Three distinct artificial bee colony algorithm variants hybridized heuristic: one best solution per iteration, another incorporating chaotic mapping adaptive procedures, third employing convergence diversity archives. An experimental design based Taguchi's orthogonal arrays was employed optimizing parameters, ensuring systematic exploration space. developed methods offer comprehensive toolkit complex, uncertain distribution, code provided reproducibility. Key contributions include:•Development model capacities under demands.•Generation advance domain.•Integration heuristic three ABC variants, each contributing unique insights.

Язык: Английский

Процитировано

2