Multi-Type Load Forecasting Model Based on Random Forest and Density Clustering with the Influence of Noise and Load Patterns DOI
Song Deng, Xia Dong, Tao Li

и другие.

Опубликована: Янв. 1, 2023

Load forecasting (LF) models lay a foundation for various smart-grid applications, whose accuracy is determined by the input load data. Prior LF studies mainly make restrictive assumptions on data, thus suffering from limited practicality in two folds: first, they model patterns over time, ignoring fact that real data are generated composition of multiple disparate electrical endeavours, leading to information loss perspective; and fail considering unexpected events which lead noises. To address these issues, we propose novel multi-type based random forest density clustering (MLF-RFDC), including three-fold ideas: 1) it each endeavour as an independent matrix; 2) detects corrects noisy entries matrix via low-rank structure; 3) harmonizes noise-free matrices all types ensemble perspective. Extensive experiments taken ten benchmark datasets three real-world datasets, results substantiate superiority our approach 11 state-of-the-art rival terms noise detection, restoration, accuracy.

Язык: Английский

Enhancing accuracy in point-interval load forecasting: A new strategy based on data augmentation, customized deep learning, and weighted linear error correction DOI
Weican Liu, Zhirui Tian, Yuyan Qiu

и другие.

Expert Systems with Applications, Год журнала: 2025, Номер unknown, С. 126686 - 126686

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

4

An Integrated Deep Learning Model for Intelligent Recognition of Long-distance Natural Gas Pipeline Features DOI
Lin Wang,

Wannian Guo,

Junyu Guo

и другие.

Reliability Engineering & System Safety, Год журнала: 2024, Номер unknown, С. 110664 - 110664

Опубликована: Ноя. 1, 2024

Язык: Английский

Процитировано

9

Multivariate rolling decomposition hybrid learning paradigm for power load forecasting DOI
Aiting Xu, Jinrun Chen, Jinchang Li

и другие.

Renewable and Sustainable Energy Reviews, Год журнала: 2025, Номер 212, С. 115375 - 115375

Опубликована: Янв. 23, 2025

Язык: Английский

Процитировано

1

A coupled framework for power load forecasting with Gaussian implicit spatio temporal block and attention mechanisms network DOI
Dezhi Liu, Xuan Lin,

Hanyang Liu

и другие.

Computers & Electrical Engineering, Год журнала: 2025, Номер 123, С. 110263 - 110263

Опубликована: Март 20, 2025

Язык: Английский

Процитировано

1

Hybrid BiGRU‐CNN Model for Load Forecasting in Smart Grids with High Renewable Energy Integration DOI Creative Commons
Kaleem Ullah,

Daniyal Shakir,

Usama Abid

и другие.

IET Generation Transmission & Distribution, Год журнала: 2025, Номер 19(1)

Опубликована: Янв. 1, 2025

ABSTRACT Integrating renewable energy sources into smart grids increases supply and demand management because are intermittent variable. To overcome this type of challenge, short‐term load forecasting (STLF) is essential for managing energy, demand‐side flexibility, the stability with integration. This paper presents a new model called BiGRU‐CNN to improve operation STLF in grids. The integrates bidirectional gated recurrent units (BiGRUs) temporal dependencies convolutional neural networks (CNNs) extract spatial patterns from consumption data. newly developed BiGRU captures past future contexts through processing, CNN component extracts high‐level features enhance accuracy prediction. compared two other hybrid models, CNN‐LSTM CNN‐GRU, on real‐world data American electric power (AEP) ISONE datasets. Simulation results show that proposed outperforms single‐step yielding root mean square error (RMSE) 121.43 123.57 (ISONE), absolute (MAE) 90.95 62.97 percentage (MAPE) 0.61% 0.41% (ISONE). For multi‐step forecasting, yields RMSE 680.02 581.12 MAE 481.12 411.20 MAPE 3.27% 2.91% can generate accurate reliable STLF, which useful massive energy‐integrated

Язык: Английский

Процитировано

1

A power load forecasting method in port based on VMD-ICSS-hybrid neural network DOI

Kai Ma,

Xuefeng Nie,

Jie Yang

и другие.

Applied Energy, Год журнала: 2024, Номер 377, С. 124246 - 124246

Опубликована: Сен. 27, 2024

Язык: Английский

Процитировано

8

Multi-type load forecasting model based on random forest and density clustering with the influence of noise and load patterns DOI
Song Deng, Xia Dong, Tao Li

и другие.

Energy, Год журнала: 2024, Номер 307, С. 132635 - 132635

Опубликована: Авг. 6, 2024

Язык: Английский

Процитировано

7

Enhancing multivariate, multi-step residential load forecasting with spatiotemporal graph attention-enabled transformer DOI Creative Commons
Pengfei Zhao, Weihao Hu,

Di Cao

и другие.

International Journal of Electrical Power & Energy Systems, Год журнала: 2024, Номер 160, С. 110074 - 110074

Опубликована: Июнь 13, 2024

Язык: Английский

Процитировано

6

Hypertuned wavelet convolutional neural network with long short-term memory for time series forecasting in hydroelectric power plants DOI
Stéfano Frizzo Stefenon, Laio Oriel Seman, Evandro Cardozo da Silva

и другие.

Energy, Год журнала: 2024, Номер unknown, С. 133918 - 133918

Опубликована: Ноя. 1, 2024

Язык: Английский

Процитировано

6

Comparison of energy consumption prediction models for air conditioning at different time scales for large public buildings DOI
Jianwen Liu,

Zhihong Zhai,

Yuxiang Zhang

и другие.

Journal of Building Engineering, Год журнала: 2024, Номер 96, С. 110423 - 110423

Опубликована: Авг. 14, 2024

Язык: Английский

Процитировано

4