Personality analysis based on multi-characteristic EEG signals DOI

Yijie Liao,

Ruipeng Chen, Zhengxiu Li

и другие.

Biomedical Signal Processing and Control, Год журнала: 2024, Номер 102, С. 107369 - 107369

Опубликована: Дек. 21, 2024

Язык: Английский

CubicPat: Investigations on the Mental Performance and Stress Detection Using EEG Signals DOI Creative Commons
Uğur İnce,

Yunus Talu,

Aleyna Duz

и другие.

Diagnostics, Год журнала: 2025, Номер 15(3), С. 363 - 363

Опубликована: Фев. 4, 2025

Background\Objectives: Solving the secrets of brain is a significant challenge for researchers. This work aims to contribute this area by presenting new explainable feature engineering (XFE) architecture designed obtain results related stress and mental performance using electroencephalography (EEG) signals. Materials Methods: Two EEG datasets were collected detect stress. To achieve classification results, XFE model was developed, incorporating novel extraction function called Cubic Pattern (CubicPat), which generates three-dimensional vector coding channels. Classification obtained cumulative weighted iterative neighborhood component analysis (CWINCA) selector t-algorithm-based k-nearest neighbors (tkNN) classifier. Additionally, generated CWINCA Directed Lobish (DLob). Results: The CubicPat-based demonstrated both interpretability. Using 10-fold cross-validation (CV) leave-one-subject-out (LOSO) CV, introduced CubicPat-driven achieved over 95% 75% accuracies, respectively, datasets. Conclusions: interpretable deploying DLob statistical analysis.

Язык: Английский

Процитировано

2

Improving flood forecast accuracy based on explainable convolutional neural network by Grad-CAM method DOI Creative Commons

Xin Xiang,

Shenglian Guo, Zhen Cui

и другие.

Journal of Hydrology, Год журнала: 2024, Номер 642, С. 131867 - 131867

Опубликована: Авг. 23, 2024

Язык: Английский

Процитировано

4

AtLSMMs network: An attentional-biLSTM based multi-model prediction for smartphone visual fatigue DOI
Yunyang Shi, Yan Tu, Lili Wang

и другие.

Displays, Год журнала: 2024, Номер 84, С. 102754 - 102754

Опубликована: Май 29, 2024

Язык: Английский

Процитировано

3

Interactive multi-agent convolutional broad learning system for EEG emotion recognition DOI Creative Commons
Shuiling Shi, Wenqi Liu

Expert Systems with Applications, Год журнала: 2024, Номер unknown, С. 125420 - 125420

Опубликована: Сен. 1, 2024

Язык: Английский

Процитировано

3

Understandable time frame-based biosignal processing DOI
Hamed Rafiei, Mohammad-R. Akbarzadeh-T

Biomedical Signal Processing and Control, Год журнала: 2025, Номер 103, С. 107429 - 107429

Опубликована: Янв. 29, 2025

Язык: Английский

Процитировано

0

TSMNet: A comprehensive network based on spatio-temporal representations for SSVEP classification DOI
Liu Deng, Pengrui Li,

Haokai Zhang

и другие.

Biomedical Signal Processing and Control, Год журнала: 2025, Номер 105, С. 107554 - 107554

Опубликована: Фев. 8, 2025

Язык: Английский

Процитировано

0

Enhancing generic cognitive workload recognition with a dynamic hierarchical 3-D attention network and EEG features DOI
Jing Zhang,

Wenlong Wu,

Jiehao Tang

и другие.

Expert Systems with Applications, Год журнала: 2025, Номер 280, С. 127563 - 127563

Опубликована: Апрель 8, 2025

Язык: Английский

Процитировано

0

A multi-domain constraint learning system inspired by adaptive cognitive graphs for emotion recognition DOI
Dongrui Gao, Mengwen Liu,

Haokai Zhang

и другие.

Neural Networks, Год журнала: 2025, Номер unknown, С. 107457 - 107457

Опубликована: Апрель 1, 2025

Язык: Английский

Процитировано

0

Diagnostic Accuracy of Machine Learning Algorithms in Electrocardiogram-Based Sleep Apnea Detection: A Systematic Review and Meta-Analysis DOI
Mustafa Eray Kılıç, Mehmet Emin Arayıcı, Oğuzhan Ekrem Turan

и другие.

Sleep Medicine Reviews, Год журнала: 2025, Номер 81, С. 102097 - 102097

Опубликована: Май 7, 2025

Язык: Английский

Процитировано

0

Emotion recognition based on convolutional gated recurrent units with attention DOI Creative Commons

Zhu Ye,

Jing Yuan, Q. Wang

и другие.

Connection Science, Год журнала: 2023, Номер 35(1)

Опубликована: Дек. 9, 2023

Studying brain activity and deciphering the information in electroencephalogram (EEG) signals has become an emerging research field, substantial advances have been made EEG-based classification of emotions. However, using different EEG features complementarity to discriminate other emotions is still challenging. Most existing models extract a single temporal feature from signal while ignoring crucial dynamic information, which, certain extent, constrains capability model. To address this issue, we propose Attention-Based Depthwise Parameterized Convolutional Gated Recurrent Unit (AB-DPCGRU) model validate it with mixed experiment on SEED SEED-IV datasets. The experimental outcomes revealed that accuracy outperforms state-of-the-art methods, which confirmed superiority our approach over currently popular emotion recognition models.

Язык: Английский

Процитировано

7