Multi-level Segmentation of Chilli Images Driven by Walrus Optimization Algorithm with Two Strategies DOI
Chen Ye, Peng Shao, Shaoping Zhang

и другие.

Lecture notes in computer science, Год журнала: 2024, Номер unknown, С. 371 - 382

Опубликована: Янв. 1, 2024

Язык: Английский

Multi-threshold image segmentation based on an improved whale optimization algorithm: A case study of Lupus Nephritis DOI
Jinge Shi, Yi Chen, Zhennao Cai

и другие.

Biomedical Signal Processing and Control, Год журнала: 2024, Номер 96, С. 106492 - 106492

Опубликована: Июнь 7, 2024

Язык: Английский

Процитировано

6

Linearized circular energy curve color image segmentation based on Tsallis entropy DOI
Shaoxun Wang, Jiulun Fan,

Heng Liu

и другие.

Expert Systems with Applications, Год журнала: 2025, Номер unknown, С. 126746 - 126746

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

0

Generalised Entropies for Decision Trees in Classification Under Monotonicity Constraints DOI Open Access

Oumaima Khalaf,

Salvador García, Anis Ben Ishak

и другие.

Expert Systems, Год журнала: 2025, Номер 42(4)

Опубликована: Март 12, 2025

ABSTRACT Several decision‐making approaches involve ordinal labelling between feature values and decision outcomes. These issues refer to classification under monotonicity constraints. Recently, some machine learning have been designed deal with these kinds of problems. Indeed, numerous experiments shown that algorithms are widely used in real‐life applications because their flexibility efficiency terms interpretation predictions. In this paper, we introduce novel for measuring quality information quantity, called Rényi‐Tsallis Monotonic Tree (RTMT), which uses the advantages Rényi Tsallis entropies while incorporating constraints through an optimisation framework. Moreover, Mono‐CART, a variant CART approach adapted monotonic classification. New tree on basis aforementioned considering within system. The conducted using benchmark datasets demonstrate superiority proposed compared existing methods.

Язык: Английский

Процитировано

0

Advancing image segmentation with DBO-Otsu: Addressing rubber tree diseases through enhanced threshold techniques DOI Creative Commons
Zhenjing Xie, Jinran Wu,

Weirui Tang

и другие.

PLoS ONE, Год журнала: 2024, Номер 19(3), С. e0297284 - e0297284

Опубликована: Март 21, 2024

Addressing the profound impact of Tapping Panel Dryness (TPD) on yield and quality in global rubber industry, this study introduces a cutting-edge Otsu threshold segmentation technique, enhanced by Dung Beetle Optimization (DBO-Otsu). This innovative approach optimizes combination accelerating convergence diversifying search methodologies. Following initial segmentation, TPD severity levels are meticulously assessed using morphological characteristics, enabling precise determination optimal thresholds for final segmentation. The efficacy DBO-Otsu is rigorously evaluated against mainstream benchmarks like Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index (SSIM), Feature (FSIM), compared with six contemporary swarm intelligence algorithms. findings reveal that substantially surpasses its counterparts image processing speed. Further empirical analysis dataset comprising cases from level 1 to 5 underscores algorithm’s practical utility, achieving an impressive 80% accuracy identification underscoring potential recognition tasks.

Язык: Английский

Процитировано

1

The Application of Tsallis Entropy Based Self-Adaptive Algorithm for Multi-Threshold Image Segmentation DOI Open Access
Kailong Zhang,

Mingyue He,

Lijie Dong

и другие.

Опубликована: Авг. 7, 2024

Tsallis entropy has been widely used in image thresholding because of its non-extensive properties. The parameter q contained this plays an important role various adaptive algorithms and successfully applied bi-level thresholding. In paper, the relationships between pixels’ long-range correlations have further studied within multi-threshold segmentation. It is found that are remarkable stable for images generated by a known physical principle, such as infrared medical CT images. And corresponding can be evaluated using self-adaptive algorithm. results algorithm compared with those Shannon original algorithm, terms quantitative quality evaluation metrics PSNR (Peak Signal-to-Noise Ratio) SSIM (Structural Similarity). Furthermore, we observed series same background, values determined consistently kept narrow range. Therefore, similar or identical scenes during imaging would produce strength correlations, which provides potential applications unsupervised processing.

Язык: Английский

Процитировано

1

The Application of Tsallis Entropy Based Self-Adaptive Algorithm for Multi-Threshold Image Segmentation DOI Creative Commons

Kailong Zhang,

Mingyue He,

Lijie Dong

и другие.

Entropy, Год журнала: 2024, Номер 26(9), С. 777 - 777

Опубликована: Сен. 10, 2024

Tsallis entropy has been widely used in image thresholding because of its non-extensive properties. The parameter

Язык: Английский

Процитировано

1

Image thresholding method based on Tsallis entropy correlation DOI
Shaoxun Wang, Jiulun Fan

Multimedia Tools and Applications, Год журнала: 2024, Номер unknown

Опубликована: Май 11, 2024

Язык: Английский

Процитировано

0

Multi-level Segmentation of Chilli Images Driven by Walrus Optimization Algorithm with Two Strategies DOI
Chen Ye, Peng Shao, Shaoping Zhang

и другие.

Lecture notes in computer science, Год журнала: 2024, Номер unknown, С. 371 - 382

Опубликована: Янв. 1, 2024

Язык: Английский

Процитировано

0