Research on a Lightweight PCB Detection Algorithm Based on AE-YOLO DOI Creative Commons
Yuanyuan Wang, Y. G. Li,

Dipu Md Sharid Kayes

и другие.

IEEE Access, Год журнала: 2024, Номер 12, С. 109367 - 109379

Опубликована: Янв. 1, 2024

The attention enhancement YOLO printed circuit board (PCB) defect detection algorithm AE-YOLO, which improves YOLOv8, is proposed to improve the current slow speed of PCB problems, such as high missed or false rates and low accuracy. First, in backbone network, CoT Net used instead original feature extraction network reduce number parameters model its while maintaining accuracy much possible. Then, SPPFS module last layer enhance model's ability extract global information, fuse features, use rich primary semantic information pave way for subsequent classification positioning. Finally, CC3 perceive high-level help decoupled head better perform target prediction positioning, comprehensiveness model, provide with continuous performance improvements. Compared YOLOv8 AE-YOLO compresses by 16%, increases 2.9%, recall rate 3.3%. This provides a more efficient method detection.

Язык: Английский

A Novel End-to-End Deep Learning Framework for Chip Packaging Defect Detection DOI Creative Commons

Siyi Zhou,

Shunhua Yao,

Tao Shen

и другие.

Sensors, Год журнала: 2024, Номер 24(17), С. 5837 - 5837

Опубликована: Сен. 8, 2024

As semiconductor chip manufacturing technology advances, structures are becoming more complex, leading to an increased likelihood of void defects in the solder layer during packaging. However, identifying packaged chips remains a significant challenge due complex background, varying defect sizes and shapes, blurred boundaries between voids their surroundings. To address these challenges, we present deep-learning-based framework for segmentation The consists two main components: region extraction method network. includes lightweight network rotation correction algorithm that eliminates background noise accurately captures chip. is designed efficient accurate segmentation. cope with variability shapes sizes, propose Mamba model-based encoder uses visual state space module multi-scale information extraction. In addition, interactive dual-stream decoder feature correlation cross gate fuse streams’ features improve produce maps. effectiveness evaluated through quantitative qualitative experiments on our custom X-ray dataset. Furthermore, proposed packaging has been applied real factory inspection line, achieving accuracy 93.3% qualification.

Язык: Английский

Процитировано

3

Multi-label body constitution recognition via HWmixer-MLP for facial and tongue images DOI
Mengjian Zhang, Guihua Wen, Pei Yang

и другие.

Expert Systems with Applications, Год журнала: 2025, Номер unknown, С. 126383 - 126383

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

0

Researching on insulator defect recognition based on context cluster CenterNet++ DOI Creative Commons
Bo Meng

Scientific Reports, Год журнала: 2025, Номер 15(1)

Опубликована: Янв. 17, 2025

The existing UAV inspection images are faced with many challenges for insulator defect recognition. A new multi-resolution Context Cluster CenterNet++ model is proposed. First, this paper proposes the method to solve problem of low recognition accuracy caused by non-uniform distribution targets. cluster region used identify and predict location target, improved loss function modify center. Secondly, uses deformable convolution operator (DCNv2) combined path aggregation network (PAN) carry out operation on image, accurately predicts regression box key point triplet (KP), so as improve accurate positioning target position any shape scale. sensitivity scale change deformation reduced, improved. Then, Bhattacharyya distance calculate prediction points center offset loss, significantly same in different frames. Finally, experiments carried MS-COCO dataset National Grid standardized image dataset. Our code at https://github.com/mengbonannan88/CC-CenterNet .

Язык: Английский

Процитировано

0

Triple-attentions based salient object detector for strip steel surface defects DOI Creative Commons
Li Zhang,

Xirui Li,

Yange Sun

и другие.

Scientific Reports, Год журнала: 2025, Номер 15(1)

Опубликована: Янв. 20, 2025

Accurate detection of surface defects on strip steel is essential for ensuring product quality. Existing deep learning based detectors typically strive to iteratively refine and integrate the coarse outputs backbone network, enhancing models' ability express defect characteristics. Attention mechanisms including spatial attention, channel attention self-attention are among most prevalent techniques feature extraction fusion. This paper introduces an innovative triple-attention mechanism (TA), characterized by interrelated complementary interactions, that concurrently refines integrates maps from three distinct perspectives, thereby features' capacity representation. The idea following observation: given a three-dimensional map, we can examine map different yet two-dimensional planar perspectives: channel-width, channel-height, width-height perspectives. Based TA, novel detector, called TADet, proposed, which encoder-decoder network: decoder uses proposed TA refines/fuses multiscale rough features generated encoder (backbone network) perspectives (branches) then purified branches. Extensive experimental results show TADet superior state-of-the-art methods in terms mean absolute error, S-measure, E-measure F-measure, confirming effectiveness robustness TADet. Our code available at https://github.com/hpguo1982/TADet .

Язык: Английский

Процитировано

0

DSRF: few-shot PCB surface defect detection via dynamic selective regulation fusion DOI
Yudong Li, Shaoqing Wang,

Zesheng Jing

и другие.

The Journal of Supercomputing, Год журнала: 2025, Номер 81(4)

Опубликована: Фев. 22, 2025

Язык: Английский

Процитировано

0

Lightweight intelligent detection algorithm for surface defects in printed circuit board DOI
Xiaolong Zhao, Haifeng Zhang, Chonghui Song

и другие.

Computers & Industrial Engineering, Год журнала: 2025, Номер unknown, С. 111030 - 111030

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

0

Application of Yolov8 Algorithm Based on Attention Mechanism in Mobile Phone Screen Detection DOI
Ruihong Wang, Rui Cong, Zhijun Wang

и другие.

Learning and analytics in intelligent systems, Год журнала: 2025, Номер unknown, С. 98 - 109

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

0

A survey on learning from data with label noise via deep neural networks DOI Creative Commons
Baoye Song,

Shihao Zhao,

L. Minh Dang

и другие.

Systems Science & Control Engineering, Год журнала: 2025, Номер 13(1)

Опубликована: Апрель 4, 2025

Язык: Английский

Процитировано

0

Yolo-Sbc: Swin Transformer Combined with Modified Yolo Framework for Pcb Defect Detection DOI

S. Han,

Di Zhou, Xiao Zhuang

и другие.

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

0

A high precision YOLO model for surface defect detection based on PyConv and CISBA DOI Creative Commons
Shufen Ruan,

Chuhang Zhan,

Bo Liu

и другие.

Scientific Reports, Год журнала: 2025, Номер 15(1)

Опубликована: Май 6, 2025

Язык: Английский

Процитировано

0