Application Domains of Aspect and Sentiment Classification Techniques: A Survey DOI
Jibran Mir, Azhar Mahmood, Shaheen Khatoon

и другие.

Neurocomputing, Год журнала: 2024, Номер unknown, С. 129237 - 129237

Опубликована: Дек. 1, 2024

Язык: Английский

Sentiment analysis methods, applications, and challenges: A systematic literature review DOI Creative Commons
Yanying Mao, Qun Liu, Yu Zhang

и другие.

Journal of King Saud University - Computer and Information Sciences, Год журнала: 2024, Номер 36(4), С. 102048 - 102048

Опубликована: Апрель 1, 2024

Язык: Английский

Процитировано

17

Graph convolutional network based on self-attention variational autoencoder and capsule contrastive learning for aspect-based sentiment analysis DOI
Xinyue Wang, Long Liu, Zhuo Chen

и другие.

Expert Systems with Applications, Год журнала: 2025, Номер unknown, С. 127172 - 127172

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

0

Semantic enhancement and cross-modal interaction fusion for sentiment analysis in social media DOI Creative Commons
Guangyu Mu,

Ying Chen,

Xiurong Li

и другие.

PLoS ONE, Год журнала: 2025, Номер 20(4), С. e0321011 - e0321011

Опубликована: Апрель 28, 2025

The rapid development of social media has significantly impacted sentiment analysis, essential for understanding public opinion and predicting trends. However, modality fusion in analysis can introduce a lot noise because the differences semantic representations among various modalities, ultimately impacting accuracy classification results. Thus, this paper presents Semantic Enhancement Cross-Modal Interaction Fusion (SECIF) model to address these issues. Firstly, BERT ResNet extract feature from text images. Secondly, GMHA mechanism is proposed aggregate important information mitigate influence noise. Then, an ICN module created capture complex contextual dependencies enhance capability representations. Finally, cross-modal interaction implemented. Text features are considered primary, image auxiliary, enabling profound integration textual visual features. model's performance optimized by combining cross-entropy KL divergence losses. experiments conducted using dataset collected events on Sina Weibo. results demonstrate that outperforms comparison models. SECIF improves 11.19%, 82.27%, 4.83% over average text-only, image-only, multimodal models, respectively. compared with ten baseline models publicly available datasets. experimental show 4.70% F1 score 6.56%. Through governments better understand emotions trends, facilitating more targeted effective management strategies.

Язык: Английский

Процитировано

0

Dual-channel relative position guided attention networks for aspect-based sentiment analysis DOI
Xuejian Gao, Liu Fang-ai, Xuqiang Zhuang

и другие.

Expert Systems with Applications, Год журнала: 2024, Номер 253, С. 124271 - 124271

Опубликована: Май 18, 2024

Язык: Английский

Процитировано

3

Investigating the impact of sentiments on stock market using digital proxies: Current trends, challenges, and future directions DOI

T. Raghavendra Gupta,

Shridev Devji, Ashish Kumar Tripathi

и другие.

Expert Systems with Applications, Год журнала: 2025, Номер unknown, С. 127864 - 127864

Опубликована: Май 1, 2025

Язык: Английский

Процитировано

0

Parameter-efficient online knowledge distillation for pretrained language models DOI
Yukun Wang, Jin Wang, Xuejie Zhang

и другие.

Expert Systems with Applications, Год журнала: 2024, Номер 265, С. 126040 - 126040

Опубликована: Дек. 9, 2024

Язык: Английский

Процитировано

1

Assessing a BERT-based model for analyzing subjectivity and classifying academic articles DOI
Atif Mehmood, Farah Shahid, Rizwan Khan

и другие.

Multimedia Tools and Applications, Год журнала: 2024, Номер unknown

Опубликована: Июнь 17, 2024

Язык: Английский

Процитировано

0

FITE-GAT: Enhancing aspect-level sentiment classification with FT-RoBERTa induced trees and graph attention network DOI
Mengmeng Fan, Mingming Kong, Xi Wang

и другие.

Expert Systems with Applications, Год журнала: 2024, Номер unknown, С. 125890 - 125890

Опубликована: Ноя. 1, 2024

Язык: Английский

Процитировано

0

Application Domains of Aspect and Sentiment Classification Techniques: A Survey DOI
Jibran Mir, Azhar Mahmood, Shaheen Khatoon

и другие.

Neurocomputing, Год журнала: 2024, Номер unknown, С. 129237 - 129237

Опубликована: Дек. 1, 2024

Язык: Английский

Процитировано

0