Life Cycle Reliability and Safety Engineering, Год журнала: 2024, Номер unknown
Опубликована: Окт. 21, 2024
Язык: Английский
Life Cycle Reliability and Safety Engineering, Год журнала: 2024, Номер unknown
Опубликована: Окт. 21, 2024
Язык: Английский
Energy, Год журнала: 2024, Номер 311, С. 133396 - 133396
Опубликована: Окт. 9, 2024
Язык: Английский
Процитировано
3International Journal of Computational Intelligence Systems, Год журнала: 2024, Номер 17(1)
Опубликована: Дек. 18, 2024
Язык: Английский
Процитировано
3Опубликована: Янв. 1, 2025
Download This Paper Open PDF in Browser Add to My Library Share: Permalink Using these links will ensure access this page indefinitely Copy URL DOI
Язык: Английский
Процитировано
0Results in Engineering, Год журнала: 2025, Номер unknown, С. 104137 - 104137
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
0Computers & Industrial Engineering, Год журнала: 2025, Номер unknown, С. 110920 - 110920
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
0Electronics, Год журнала: 2025, Номер 14(7), С. 1454 - 1454
Опубликована: Апрель 3, 2025
The emerging capabilities of artificial intelligence (AI) and the systems that employ them have reached a point where they are integrated into critical decision-making processes, making it paramount to change adjust how evaluated, monitored, governed. For this reason, trustworthy AI (TAI) has received increased attention lately, primarily aiming build trust between humans AI. Due far-reaching socio-technical consequences AI, organisations government bodies already started implementing frameworks legislation for enforcing TAI, such as European Union’s Act. Multiple approaches evolved around covering different aspects trustworthiness include fairness, bias, explainability, robustness, accuracy, more. Moreover, depending on models stage system lifecycle, several methods techniques can be used each characteristic assess potential risks mitigate them. Deriving from all above is need comprehensive tools solutions help stakeholders follow TAI guidelines adopt practically increase trustworthiness. In paper, we formulate propose Trustworthiness Optimisation Process (TOP), which operationalises brings together its procedural technical throughout lifecycle. It incorporates state-of-the-art enablers documentation cards, risk management, toolkits find given system. To showcase application proposed methodology, case study conducted, demonstrating fairness an increased.
Язык: Английский
Процитировано
0Expert Systems with Applications, Год журнала: 2025, Номер 284, С. 127683 - 127683
Опубликована: Апрель 28, 2025
Язык: Английский
Процитировано
0PLoS ONE, Год журнала: 2025, Номер 20(5), С. e0322299 - e0322299
Опубликована: Май 28, 2025
Context and background. Depression has affected millions of people worldwide become one the most common mental disorders. Early disorder detection can reduce costs for public health agencies prevent other major comorbidities. Additionally, shortage specialized personnel is very concerning since depression diagnosis highly dependent on expert professionals time-consuming. Research problems . Recent research evidenced that machine learning (ML) natural language processing (NLP) tools techniques have significantly benefited depression. However, there are still several challenges in assessment approaches which conditions such as post-traumatic stress (PTSD) present. These include assessing alternatives terms data cleaning pre-processing techniques, feature selection, appropriate ML classification algorithms. Purpose study This paper tackles an based a case compares different classifiers, specifically pre-processing, parameter setting, model choices. Methodology The experimental Distress Analysis Interview Corpus - Wizard-of-Oz (DAIC-WOZ) dataset, designed to support disorders depression, anxiety, PTSD. Major findings Besides alternative we were able build models with accuracy levels around 84% Random Forest XGBoost models, higher than results from comparable literature presented level 72% SVM model. Conclusions More comprehensive assessments algorithms NLP advance state art improved settings performance.
Язык: Английский
Процитировано
0Expert Systems with Applications, Год журнала: 2024, Номер 255, С. 124842 - 124842
Опубликована: Июль 26, 2024
Язык: Английский
Процитировано
2Опубликована: Июнь 4, 2024
Язык: Английский
Процитировано
1