Earth Science Informatics, Год журнала: 2024, Номер 17(5), С. 4279 - 4295
Опубликована: Июль 1, 2024
Язык: Английский
Earth Science Informatics, Год журнала: 2024, Номер 17(5), С. 4279 - 4295
Опубликована: Июль 1, 2024
Язык: Английский
Expert Systems with Applications, Год журнала: 2024, Номер 255, С. 124856 - 124856
Опубликована: Июль 24, 2024
Язык: Английский
Процитировано
7Journal of Marine Science and Engineering, Год журнала: 2024, Номер 12(7), С. 1098 - 1098
Опубликована: Июнь 28, 2024
Optimizing ship energy efficiency is a crucial measure for reducing fuel use and emissions in the shipping industry. Accurate prediction models of consumption are essential achieving this optimization. However, external factors affecting have not been comprehensively investigated, many existing studies still face accuracy challenges. In study, we propose neural network model called TCN-GRU-MHSA (TGMA), which incorporates temporal convolutional (TCN), gated recurrent unit (GRU), multi-head self-attention mechanisms to predict consumption. Firstly, characteristics operation data analyzed, appropriate input features selected. Then, established validated through application analysis. Using proposed model, can reach up 96.04%. Comparative analysis results show that TGMA outperforms models, including those based on LSTM, GRU, SVR, TCN-GRU, BP networks, terms accuracy. Therefore, developed effectively usage under various conditions, making it optimizing improving efficiency.
Язык: Английский
Процитировано
5Iranian Journal of Science and Technology Transactions of Civil Engineering, Год журнала: 2025, Номер unknown
Опубликована: Янв. 13, 2025
Язык: Английский
Процитировано
0Journal of Water and Climate Change, Год журнала: 2025, Номер unknown
Опубликована: Янв. 31, 2025
ABSTRACT Streamflow forecasts play an active role in hydrological planning and taking precautions against natural disasters. prediction models are frequently used by scientists, especially dam management, sustainable agriculture, flood control, mitigation. Hence, streamflow modeling was performed this study, six were employed through four different machine learning (ML) algorithms, namely, the artificial neural network (ANN), random forest (RF), support vector (SVM), decision tree (DT) that well known literature, order to predict monthly of Çarşamba River, Türkiye. To further enhance model performance, wavelet transform (WT) applied ML algorithms. In average precipitation data between 1974 2015 used, minimum redundancy maximum relevance method (MRMR) cross-correlation determine input data. Results study revealed RF had superiority over other before WT, followed SVM model. The after WT (W-SVM), M04 (r: 0.9846, NSE: 0.9695, RMSE: 0.3536) gave most effective performance results, while W-ANN 0.9797, 0.9588, 0.4108) showed second best performance.
Язык: Английский
Процитировано
0Journal of Hydrology, Год журнала: 2024, Номер 636, С. 131230 - 131230
Опубликована: Апрель 24, 2024
Язык: Английский
Процитировано
3Environmental and Ecological Statistics, Год журнала: 2025, Номер unknown
Опубликована: Фев. 23, 2025
Язык: Английский
Процитировано
0Acta Geophysica, Год журнала: 2025, Номер unknown
Опубликована: Март 24, 2025
Язык: Английский
Процитировано
0Hydrological Sciences Journal, Год журнала: 2024, Номер 69(11), С. 1501 - 1522
Опубликована: Июль 1, 2024
Accurate daily streamflow forecasts remain challenging in arid regions. A Bayesian Model Averaging (BMA) ensemble learning strategy was proposed to forecast 1-, 2-, and 3-day ahead Dunhuang Oasis, northwest China. The efficiency of BMA compared with four decomposition-based machine deep models. Satisfactory were achieved all models at lead times; however, based on NSE values 0.976, 0.967, 0.957, the greatest accuracy for forecasts, respectively. Uncertainty analysis confirmed reliability yielding consistently accurate forecasts. Thus, could provide an efficient alternative approach multistep-ahead forecasting. incorporation data decomposition techniques (e.g. Variational mode decomposition) algorithms Deep belief network) into BMA, may serve as worthy technical references supervised systems scare
Язык: Английский
Процитировано
2Results in Engineering, Год журнала: 2024, Номер 24, С. 103319 - 103319
Опубликована: Ноя. 5, 2024
Язык: Английский
Процитировано
2Computers and Electronics in Agriculture, Год журнала: 2024, Номер 230, С. 109881 - 109881
Опубликована: Дек. 31, 2024
Язык: Английский
Процитировано
1