NDT & E International, Год журнала: 2024, Номер 148, С. 103220 - 103220
Опубликована: Авг. 28, 2024
Язык: Английский
NDT & E International, Год журнала: 2024, Номер 148, С. 103220 - 103220
Опубликована: Авг. 28, 2024
Язык: Английский
Industrial & Engineering Chemistry Research, Год журнала: 2025, Номер unknown
Опубликована: Апрель 18, 2025
Язык: Английский
Процитировано
1Neurocomputing, Год журнала: 2025, Номер unknown, С. 129612 - 129612
Опубликована: Фев. 1, 2025
Язык: Английский
Процитировано
0IEEE Transactions on Cybernetics, Год журнала: 2024, Номер 54(11), С. 6867 - 6880
Опубликована: Сен. 4, 2024
Deep learning-based soft sensor modeling methods have been extensively studied and applied to industrial processes in the last decade. However, existing models mainly focus on current step prediction real time ignore multistep advance. In actual applications, compared prediction, it is more useful for on-site workers predict some key performance indicators Nowadays, task still suffers from two issues: 1) complex coupling relationships between process variables 2) long-term dependency learning. To ravel out these problems, this article, we propose a graph-based time-frequency two-stream network achieve prediction. Specifically, multigraph attention layer proposed model dynamical graph perspective. Then, network, multi-GAT used extract time-domain features frequency-domain dependency, respectively. Furthermore, feature fusion module combine kinds of based minimum redundancy maximum correlation learning paradigm. Finally, extensive experiments real-world datasets show that outperforms state-of-the-art models. particular, SOTA method, method has achieved 12.40%, 22.49%, 21.98% improvement RMSE, MAE, MAPE three-step using waste incineration dataset.
Язык: Английский
Процитировано
1Опубликована: Июнь 14, 2024
Язык: Английский
Процитировано
0NDT & E International, Год журнала: 2024, Номер 148, С. 103220 - 103220
Опубликована: Авг. 28, 2024
Язык: Английский
Процитировано
0