Does intraday high-frequency investor sentiment help forecast stock returns? Evidence from the MIDAS models DOI
Xiaojun Chu, Yefu Gu

China Finance Review International, Год журнала: 2024, Номер unknown

Опубликована: Дек. 23, 2024

Purpose This paper aims to enhance the predictability of stock returns. Existing studies have used investor sentiment forecast However, it is unclear whether high-frequency intraday can forecasting performance low-frequency Design/methodology/approach Thus, we employ MIDAS model and extracted from Internet forum Chinese A-shares returns at daily frequency. Findings The results illustrate that data are better than in predicting returns, non-trading hours has been proved superior those trading hours. Originality/value First, our study adds growing literature on sentiment. We first construct a proxy for using postings collected forum. Second, confirm stronger predictive ability Third, also contribute comparison MIDAS-class models. good U-MIDAS confirmed empirical applications.

Язык: Английский

A Novel Forecasting Framework Leveraging Large Language Model and Machine Learning for Methanol Price DOI
Wenyang Wang,

Yuping Luo,

Mingrui Ma

и другие.

Energy, Год журнала: 2025, Номер unknown, С. 135123 - 135123

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

2

Research on Crude Oil Futures Price Prediction Methods: A Perspective Based on Quantum Deep Learning DOI
Dongsheng Zhai, Tianrui Zhang, Guoqiang Liang

и другие.

Energy, Год журнала: 2025, Номер unknown, С. 135080 - 135080

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

1

A novel link prediction model for interval-valued crude oil prices based on complex network and multi-source information DOI
Jinpei Liu,

Xiaoman Zhao,

Rui Luo

и другие.

Applied Energy, Год журнала: 2024, Номер 376, С. 124261 - 124261

Опубликована: Авг. 27, 2024

Язык: Английский

Процитировано

4

A hybrid system with optimized decomposition on random deep learning model for crude oil futures forecasting DOI
Jie Wang, Ying Zhang

Expert Systems with Applications, Год журнала: 2025, Номер unknown, С. 126706 - 126706

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

0

Bioenergy Market Predictions using AI: Integrating Climate Change and Green Finance DOI
Lili Guo,

Quanfeixue Cheng,

Xiangyi He

и другие.

Renewable Energy, Год журнала: 2025, Номер unknown, С. 123328 - 123328

Опубликована: Апрель 1, 2025

Язык: Английский

Процитировано

0

Investigation of causal public opinion indexes for price fluctuation in vegetable marketing DOI
Youzhu Li, Jinyu Yao,

Jingjing Song

и другие.

Computers & Electrical Engineering, Год журнала: 2024, Номер 116, С. 109227 - 109227

Опубликована: Апрель 9, 2024

Язык: Английский

Процитировано

3

Maritime Fuel Price Prediction of European Ports using Least Square Boosting and Facebook Prophet: Additional Insights from Explainable Artificial Intelligence DOI Creative Commons
Indranil Ghosh, Arijit De

Transportation Research Part E Logistics and Transportation Review, Год журнала: 2024, Номер 189, С. 103686 - 103686

Опубликована: Июль 23, 2024

Prediction of bunker fuel spot prices at a port and understanding the dependence on key determinants is an arduous challenging activity. The present work strives to analyze temporal spectrum daily Very Low Sulphur Oil (VLSFO), critical fuel, in five European Ports, Amsterdam, Antwerp, Gothenburg, Hamburg, Rotterdam. lack prior research allied domain has motivated undertake modeling VLSFO through lens applied predictive analytics. Least Square Boosting (LSBoost) Facebook Prophet algorithms are used draw forecasts multivariate framework leveraging constructs related same different ports, economic indicator, etc. dynamics have been explicitly examined during Russia-Ukraine military conflict. Additionally, Explainable Artificial Intelligence (XAI) frameworks demystify influence chosen explanatory variables granular scale. overall findings espouse effectiveness accurately estimating any selected heavily depends ports.

Язык: Английский

Процитировано

3

A crude oil price forecasting framework based on Constraint Guarantee and Pareto Fronts Shrinking Strategy DOI
Y. Chen, Zhirui Tian

Applied Soft Computing, Год журнала: 2025, Номер unknown, С. 112996 - 112996

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

0

A hybrid model based on iTransformer for risk warning of crude oil price fluctuations DOI
Jinchao Li, Yang Guo

Energy, Год журнала: 2024, Номер unknown, С. 134199 - 134199

Опубликована: Дек. 1, 2024

Язык: Английский

Процитировано

1

A novel selective ensemble point and interval prediction system for energy futures price: Forming a new multi-objective modeling paradigm DOI
Jingyi Wang

Applied Intelligence, Год журнала: 2024, Номер 54(7), С. 5465 - 5485

Опубликована: Апрель 1, 2024

Язык: Английский

Процитировано

0