Engineering Applications of Artificial Intelligence, Год журнала: 2024, Номер 138, С. 109502 - 109502
Опубликована: Окт. 21, 2024
Язык: Английский
Engineering Applications of Artificial Intelligence, Год журнала: 2024, Номер 138, С. 109502 - 109502
Опубликована: Окт. 21, 2024
Язык: Английский
Expert Systems with Applications, Год журнала: 2024, Номер 255, С. 124673 - 124673
Опубликована: Июль 4, 2024
Язык: Английский
Процитировано
4Computer Methods in Biomechanics & Biomedical Engineering, Год журнала: 2025, Номер unknown, С. 1 - 15
Опубликована: Янв. 6, 2025
Convolutional neural networks (CNNs) have been widely utilized for decoding motor imagery (MI) from electroencephalogram (EEG) signals. However, extracting discriminative spatial-temporal-spectral features low signal-to-noise ratio EEG signals remains challenging. This paper proposes MBMSNet , a multi-branch, multi-scale, and multi-view CNN with lightweight temporal attention mechanism EEG-Based MI decoding. Specifically, first extracts representations raw signals, followed by independent branches to capture spatial, spectral, temporal-spatial, temporal-spectral features. Each branch includes domain-specific convolutional layer, variance layer. Finally, the derived each are concatenated weights classified through fully connected Experiments demonstrate outperforms state-of-the-art models, achieving accuracies of 84.60% on BCI Competition IV 2a, 87.80% 2b, 74.58% OpenBMI, showcasing its potential robust applications.
Язык: Английский
Процитировано
0Biomedical Signal Processing and Control, Год журнала: 2024, Номер 97, С. 106717 - 106717
Опубликована: Авг. 14, 2024
Язык: Английский
Процитировано
3Brain Sciences, Год журнала: 2025, Номер 15(1), С. 50 - 50
Опубликована: Янв. 7, 2025
Decoding motor intentions from electroencephalogram (EEG) signals is a critical component of imagery-based brain-computer interface (MI-BCIs). In traditional EEG signal classification, effectively utilizing the valuable information contained within crucial. To further optimize use various domains, we propose novel framework based on multi-domain feature rotation transformation and stacking ensemble for classifying MI tasks. Initially, extract features Time Domain, Frequency domain, Time-Frequency Spatial Domain signals, perform selection each domain to identify significant that possess strong discriminative capacity. Subsequently, local transformations are applied set generate rotated set, enhancing representational capacity features. Next, were fused with original obtain composite domain. Finally, employ approach, where prediction results base classifiers corresponding different undergo linear discriminant analysis dimensionality reduction, yielding integration as input meta-classifier classification. The proposed method achieves average classification accuracies 92.92%, 89.13%, 86.26% BCI Competition III Dataset IVa, IV I, 2a, respectively. Experimental show in this paper outperforms several existing methods, such Common Time-Frequency-Spatial Patterns Selective Extract Multi-View Decomposed Spatial, terms accuracy robustness.
Язык: Английский
Процитировано
0Neurocomputing, Год журнала: 2025, Номер unknown, С. 129410 - 129410
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
0Communications in computer and information science, Год журнала: 2025, Номер unknown, С. 338 - 349
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
0Expert Systems with Applications, Год журнала: 2025, Номер unknown, С. 127312 - 127312
Опубликована: Март 1, 2025
Язык: Английский
Процитировано
0Expert Systems with Applications, Год журнала: 2024, Номер 262, С. 125585 - 125585
Опубликована: Окт. 24, 2024
Язык: Английский
Процитировано
2Connection Science, Год журнала: 2024, Номер 36(1)
Опубликована: Ноя. 16, 2024
Язык: Английский
Процитировано
2Engineering Applications of Artificial Intelligence, Год журнала: 2024, Номер 137, С. 109256 - 109256
Опубликована: Сен. 6, 2024
Язык: Английский
Процитировано
1