Efficient one-step multi-trial electroencephalograph spectral clustering via unsupervised covariance-based representations DOI
Tian-jian Luo

Engineering Applications of Artificial Intelligence, Год журнала: 2024, Номер 138, С. 109502 - 109502

Опубликована: Окт. 21, 2024

Язык: Английский

Dual regularized spatial-temporal features adaptation for multi-source selected cross-subject motor imagery EEG classification DOI
Tian-jian Luo

Expert Systems with Applications, Год журнала: 2024, Номер 255, С. 124673 - 124673

Опубликована: Июль 4, 2024

Язык: Английский

Процитировано

4

A multi-branch, multi-scale, and multi-view CNN with lightweight temporal attention mechanism for EEG-based motor imagery decoding DOI
Lei Zhu, Yunsheng Wang,

Aiai Huang

и другие.

Computer Methods in Biomechanics & Biomedical Engineering, Год журнала: 2025, Номер unknown, С. 1 - 15

Опубликована: Янв. 6, 2025

Convolutional neural networks (CNNs) have been widely utilized for decoding motor imagery (MI) from electroencephalogram (EEG) signals. However, extracting discriminative spatial-temporal-spectral features low signal-to-noise ratio EEG signals remains challenging. This paper proposes MBMSNet , a multi-branch, multi-scale, and multi-view CNN with lightweight temporal attention mechanism EEG-Based MI decoding. Specifically, first extracts representations raw signals, followed by independent branches to capture spatial, spectral, temporal-spatial, temporal-spectral features. Each branch includes domain-specific convolutional layer, variance layer. Finally, the derived each are concatenated weights classified through fully connected Experiments demonstrate outperforms state-of-the-art models, achieving accuracies of 84.60% on BCI Competition IV 2a, 87.80% 2b, 74.58% OpenBMI, showcasing its potential robust applications.

Язык: Английский

Процитировано

0

A session-incremental broad learning system for motor imagery EEG classification DOI
Yufei Yang, Mingai Li, Hanlin Liu

и другие.

Biomedical Signal Processing and Control, Год журнала: 2024, Номер 97, С. 106717 - 106717

Опубликована: Авг. 14, 2024

Язык: Английский

Процитировано

3

Motor Imagery EEG Classification Based on Multi-Domain Feature Rotation and Stacking Ensemble DOI Creative Commons
Xianglong Zhu, Ming Meng, Zewen Yan

и другие.

Brain Sciences, Год журнала: 2025, Номер 15(1), С. 50 - 50

Опубликована: Янв. 7, 2025

Decoding motor intentions from electroencephalogram (EEG) signals is a critical component of imagery-based brain-computer interface (MI-BCIs). In traditional EEG signal classification, effectively utilizing the valuable information contained within crucial. To further optimize use various domains, we propose novel framework based on multi-domain feature rotation transformation and stacking ensemble for classifying MI tasks. Initially, extract features Time Domain, Frequency domain, Time-Frequency Spatial Domain signals, perform selection each domain to identify significant that possess strong discriminative capacity. Subsequently, local transformations are applied set generate rotated set, enhancing representational capacity features. Next, were fused with original obtain composite domain. Finally, employ approach, where prediction results base classifiers corresponding different undergo linear discriminant analysis dimensionality reduction, yielding integration as input meta-classifier classification. The proposed method achieves average classification accuracies 92.92%, 89.13%, 86.26% BCI Competition III Dataset IVa, IV I, 2a, respectively. Experimental show in this paper outperforms several existing methods, such Common Time-Frequency-Spatial Patterns Selective Extract Multi-View Decomposed Spatial, terms accuracy robustness.

Язык: Английский

Процитировано

0

Multi-domain feature analysis of MI-EEG signals using tensor train decomposition and projected gradient Non-negative Matrix Factorization DOI
Yunyuan Gao,

Wang Xie,

Zhizeng Luo

и другие.

Neurocomputing, Год журнала: 2025, Номер unknown, С. 129410 - 129410

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

0

Motor Imagery EEG Signals Decoding with Multi-view Weighted Features DOI
Nan Li,

Wenbin Li,

Tingting Zhang

и другие.

Communications in computer and information science, Год журнала: 2025, Номер unknown, С. 338 - 349

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

0

Joint spatial feature adaption and confident pseudo-label selection for cross-subject motor imagery EEG signals classification DOI
Siqi Yang, Zhihua Huang, Tian-jian Luo

и другие.

Expert Systems with Applications, Год журнала: 2025, Номер unknown, С. 127312 - 127312

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

0

Diffusion models-based motor imagery EEG sample augmentation via mixup strategy DOI
Tian-jian Luo,

Zikun Cai

Expert Systems with Applications, Год журнала: 2024, Номер 262, С. 125585 - 125585

Опубликована: Окт. 24, 2024

Язык: Английский

Процитировано

2

Enhancing motor imagery classification: a novel CNN with self-attention using local and global features of filtered EEG data DOI Creative Commons
Arun Reddy, Rajeev Sharma

Connection Science, Год журнала: 2024, Номер 36(1)

Опубликована: Ноя. 16, 2024

Язык: Английский

Процитировано

2

fNIRSNET: A multi-view spatio-temporal convolutional neural network fusion for functional near-infrared spectroscopy-based auditory event classification DOI
Prashant Pandey, John McLinden, N. Rahimi

и другие.

Engineering Applications of Artificial Intelligence, Год журнала: 2024, Номер 137, С. 109256 - 109256

Опубликована: Сен. 6, 2024

Язык: Английский

Процитировано

1