Robust multi-view clustering via structure regularization concept factorization DOI
X.C. Hu, Dan Xiong, Li Chai

и другие.

Digital Signal Processing, Год журнала: 2024, Номер 155, С. 104713 - 104713

Опубликована: Авг. 2, 2024

Язык: Английский

One-hot constrained symmetric nonnegative matrix factorization for image clustering DOI
Jie Li, Chaoqian Li

Pattern Recognition, Год журнала: 2025, Номер 162, С. 111427 - 111427

Опубликована: Фев. 7, 2025

Язык: Английский

Процитировано

1

Identifying optimal technique of reducing dimensionality of scour influencing hydraulic parameters apply SWOT analysis DOI

Sudarshan Mondal,

Buddhadev Nandi, Subhasish Das

и другие.

Expert Systems with Applications, Год журнала: 2025, Номер unknown, С. 126829 - 126829

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

1

An autoencoder-like deep NMF representation learning algorithm for clustering DOI
Dexian Wang, Pengfei Zhang, Ping Deng

и другие.

Knowledge-Based Systems, Год журнала: 2024, Номер 305, С. 112597 - 112597

Опубликована: Окт. 10, 2024

Язык: Английский

Процитировано

4

A collaborative filtering recommender systems: Survey DOI
Mohammed Fadhel Aljunid,

Manjaiah D.H,

Mohammad Kazim Hooshmand

и другие.

Neurocomputing, Год журнала: 2024, Номер unknown, С. 128718 - 128718

Опубликована: Ноя. 1, 2024

Язык: Английский

Процитировано

4

When graph neural networks meet deep nonnegative matrix factorization: An encoder and decoder-like method for community detection DOI
Junwei Cheng, Chaobo He, Xihuang Lin

и другие.

Expert Systems with Applications, Год журнала: 2025, Номер unknown, С. 126676 - 126676

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

0

Deep Supervised Cone-Based Nonnegative Matrix Factorization in Image Pattern Space DOI
Jinghui He, Wen-Sheng Chen, Binbin Pan

и другие.

Communications in computer and information science, Год журнала: 2025, Номер unknown, С. 49 - 60

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

0

Analysis of deep non-smooth symmetric nonnegative matrix factorization on hierarchical clustering DOI
Shunli Li, Linzhang Lu, Qilong Liu

и другие.

Applied Intelligence, Год журнала: 2025, Номер 55(6)

Опубликована: Фев. 24, 2025

Язык: Английский

Процитировано

0

Evaluation of stroke sequelae and rehabilitation effect on brain tumor by neuroimaging technique: A comparative study DOI Creative Commons
Qing Xu, Lin Sun

PLoS ONE, Год журнала: 2025, Номер 20(2), С. e0317193 - e0317193

Опубликована: Фев. 24, 2025

This study aims at the limitations of traditional methods in evaluation stroke sequelae and rehabilitation effect monitoring, especially for accurate identification tracking brain injury areas. To overcome these challenges, we introduce an advanced neuroimaging technology based on deep learning, SWI-BITR-UNet model. model, introduced as novel Machine Learning (ML) combines SWIN Transformer’s local receptive field shift mechanism, effective feature fusion strategy U-Net architecture, aiming to improve accuracy lesion region segmentation multimodal MRI scans. Through application a 3-D CNN encoder decoder, well integration CBAM attention module jump connection, model can finely capture refine features, achieve level comparable that manual by experts. introduces 3D encoder-decoder architecture specifically designed enhance processing capabilities medical imaging data. The development utilizes ADAM optimization algorithm facilitate training process. Bra2020 dataset is utilized assess proposed learning neural network. By employing skip connections, effectively integrates high-resolution features from with up-sampling thereby increasing model’s sensitivity spatial characteristics. both testing phases, SWI-BITR-Unet trained using reliable datasets evaluated through comprehensive array statistical metrics, including Recall (Rec), Precision (Pre), F1 test score, Kappa Coefficient (KC), mean Intersection over Union (mIoU), Receiver Operating Characteristic-Area Under Curve (ROC-AUC). Furthermore, various machine models, such Random Forest (RF), Support Vector (SVM), Extreme Gradient Boosting (XGBoost), Categorical (CatBoost), Adaptive (AdaBoost), K-Nearest Neighbor (KNN), have been employed analyze tumor progression brain, performance characterized Hausdorff distance. In From ML was more than other models. Subsequently, regarding DICE coefficient values, maps (annotation distributions) generated models indicated models’s capability autonomously delineate areas core (TC) enhancing (ET). Moreover, efficacy demonstrated superiority existing research field. computational efficiency ability handle long-distance dependencies make it particularly suitable applications clinical Settings. results showed SNA-BITR-UNet not only identify monitor subtle changes area, but also provided new efficient tool process, providing scientific basis developing personalized plans.

Язык: Английский

Процитировано

0

Representation Auto-fused NMF based Hierarchical Clustering DOI

Yunxia Lin,

Hang-Rui Hu,

Bentian Li

и другие.

Expert Systems with Applications, Год журнала: 2025, Номер unknown, С. 127560 - 127560

Опубликована: Апрель 1, 2025

Язык: Английский

Процитировано

0

High-Order Aligned Deep Complementary and View-Specific Similarity Graphs for Unsupervised Multi-View Feature Selection DOI
Jian Wu, Jiangsheng Yu,

Junyun Wu

и другие.

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

0