Digital Signal Processing, Год журнала: 2024, Номер 155, С. 104713 - 104713
Опубликована: Авг. 2, 2024
Язык: Английский
Digital Signal Processing, Год журнала: 2024, Номер 155, С. 104713 - 104713
Опубликована: Авг. 2, 2024
Язык: Английский
Pattern Recognition, Год журнала: 2025, Номер 162, С. 111427 - 111427
Опубликована: Фев. 7, 2025
Язык: Английский
Процитировано
1Expert Systems with Applications, Год журнала: 2025, Номер unknown, С. 126829 - 126829
Опубликована: Фев. 1, 2025
Язык: Английский
Процитировано
1Knowledge-Based Systems, Год журнала: 2024, Номер 305, С. 112597 - 112597
Опубликована: Окт. 10, 2024
Язык: Английский
Процитировано
4Neurocomputing, Год журнала: 2024, Номер unknown, С. 128718 - 128718
Опубликована: Ноя. 1, 2024
Язык: Английский
Процитировано
4Expert Systems with Applications, Год журнала: 2025, Номер unknown, С. 126676 - 126676
Опубликована: Фев. 1, 2025
Язык: Английский
Процитировано
0Communications in computer and information science, Год журнала: 2025, Номер unknown, С. 49 - 60
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
0Applied Intelligence, Год журнала: 2025, Номер 55(6)
Опубликована: Фев. 24, 2025
Язык: Английский
Процитировано
0PLoS ONE, Год журнала: 2025, Номер 20(2), С. e0317193 - e0317193
Опубликована: Фев. 24, 2025
This study aims at the limitations of traditional methods in evaluation stroke sequelae and rehabilitation effect monitoring, especially for accurate identification tracking brain injury areas. To overcome these challenges, we introduce an advanced neuroimaging technology based on deep learning, SWI-BITR-UNet model. model, introduced as novel Machine Learning (ML) combines SWIN Transformer’s local receptive field shift mechanism, effective feature fusion strategy U-Net architecture, aiming to improve accuracy lesion region segmentation multimodal MRI scans. Through application a 3-D CNN encoder decoder, well integration CBAM attention module jump connection, model can finely capture refine features, achieve level comparable that manual by experts. introduces 3D encoder-decoder architecture specifically designed enhance processing capabilities medical imaging data. The development utilizes ADAM optimization algorithm facilitate training process. Bra2020 dataset is utilized assess proposed learning neural network. By employing skip connections, effectively integrates high-resolution features from with up-sampling thereby increasing model’s sensitivity spatial characteristics. both testing phases, SWI-BITR-Unet trained using reliable datasets evaluated through comprehensive array statistical metrics, including Recall (Rec), Precision (Pre), F1 test score, Kappa Coefficient (KC), mean Intersection over Union (mIoU), Receiver Operating Characteristic-Area Under Curve (ROC-AUC). Furthermore, various machine models, such Random Forest (RF), Support Vector (SVM), Extreme Gradient Boosting (XGBoost), Categorical (CatBoost), Adaptive (AdaBoost), K-Nearest Neighbor (KNN), have been employed analyze tumor progression brain, performance characterized Hausdorff distance. In From ML was more than other models. Subsequently, regarding DICE coefficient values, maps (annotation distributions) generated models indicated models’s capability autonomously delineate areas core (TC) enhancing (ET). Moreover, efficacy demonstrated superiority existing research field. computational efficiency ability handle long-distance dependencies make it particularly suitable applications clinical Settings. results showed SNA-BITR-UNet not only identify monitor subtle changes area, but also provided new efficient tool process, providing scientific basis developing personalized plans.
Язык: Английский
Процитировано
0Expert Systems with Applications, Год журнала: 2025, Номер unknown, С. 127560 - 127560
Опубликована: Апрель 1, 2025
Язык: Английский
Процитировано
0Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
0