Signal Image and Video Processing, Год журнала: 2024, Номер 19(2)
Опубликована: Дек. 9, 2024
Язык: Английский
Signal Image and Video Processing, Год журнала: 2024, Номер 19(2)
Опубликована: Дек. 9, 2024
Язык: Английский
Journal of Integrative Neuroscience, Год журнала: 2025, Номер 24(1)
Опубликована: Янв. 7, 2025
Background: Observation, execution, and imitation of target actions based on mirror neuron network (MNN) have become common physiotherapy strategies. Electrical stimulation (ES) is a intervention to improve muscle strength motor control in rehabilitation treatments. It possible enhance MNN’s activation by combining execution (ME) (MI) with ES simultaneously. This study aims reveal whether could impact cortical during ME MI. Methods: We recruited healthy individuals assigned them randomly the group (CG) or experiment (EG). Participants EG performed MI tasks ES, while participants CG same two sham ES. utilized functional near-infrared spectroscopy (fNIRS) detect brain MNN without randomized block design paradigm was designed. Descriptive analysis oxy-hemoglobin (HbO) deoxy-hemoglobin (HbR) were used show hemoglobin (Hb) concentration changes after different event onsets both EG, linear mixed-effects model (LMM) HbO data employed analyze effect MNN. Results: A total 102 adults 72 participants’ analysed final report. The averaged Hb showed that increased HbR decreased most regions groups. LMM results can significantly inferior frontal gyrus, middle precentral gyrus MI, supplementary area, parietal lobule, superior temporal gyri activation, but statistical significance. Although did not reach significance ME, still positive effects overall activations. Conclusions: In this study, we present potential novel approaches combines strategies low-frequency activation. Our revealed has increase areas, providing evidence for related rehabilitative interventions device development. Clinical Trial Registration: registered China Registration Center (identifier: ChiCTR2200064082, 26, September 2022, https://www.chictr.org.cn/showproj.html?proj=178285).
Язык: Английский
Процитировано
1Biomedical Signal Processing and Control, Год журнала: 2025, Номер 104, С. 107528 - 107528
Опубликована: Янв. 27, 2025
Язык: Английский
Процитировано
0Journal of Optics, Год журнала: 2025, Номер unknown
Опубликована: Фев. 27, 2025
Язык: Английский
Процитировано
0Advances in computational intelligence and robotics book series, Год журнала: 2025, Номер unknown, С. 95 - 136
Опубликована: Апрель 25, 2025
The rise of artificial intelligence (AI) has amplified spreading falsified, misleading information, and the difficulty to detect manipulated content, warranting need identify determinants user susceptibility toward mis-and-disinformation from AI in public health contexts. Adopting a three-stage dual processes theory, this chapter proposed conceptual model that explains as results courtesy type 2 processing. From individual-level, individuals who reflect higher trust AI, literacy, analytical mindset, bullshit receptivity, prior experience with are more vulnerable mis-and-disinformation. AI-level, people susceptible automation levels if content produced is aligned people's knowledge. contextual-level, disinformation they pressed for time overloaded extra information. Practical, legal, ethical implications were discussed.
Язык: Английский
Процитировано
0Lecture notes in computer science, Год журнала: 2025, Номер unknown, С. 313 - 333
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
0Опубликована: Июнь 7, 2024
In this paper, the application of Artificial Intelligence (AI) and related topics (e.g., Machine Learning, Neural Networks (ANNs), deep learning) as they apply to analytic spectrometry either using Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES), or a portable, battery-operated microplasma-OES) fiber-optic spectrometer) will be described, AI teaching analytical atomic outlined.
Язык: Английский
Процитировано
0Applied Sciences, Год журнала: 2024, Номер 14(21), С. 9831 - 9831
Опубликована: Окт. 28, 2024
This study deals with an analysis of the cognitive load indicators produced in virtual simulation tasks through supervised and unsupervised machine learning techniques. The objectives were (1) to identify most important use techniques; (2) which type task presentation was effective at reducing task’s intrinsic increasing its germane load; (3) propose explanatory model find fit indicators. We worked a sample 48 health sciences biomedical engineering students from University Burgos (Spain). results indicate that being able see before performing it increases decreases load. Similarly, allowing choice channel for respects how they process information. In addition, found be grouped into components position, speed, psychogalvanic response, skin conductance. An proposed obtained acceptable
Язык: Английский
Процитировано
0Signal Image and Video Processing, Год журнала: 2024, Номер 19(2)
Опубликована: Дек. 9, 2024
Язык: Английский
Процитировано
0