Genomic privacy preservation in genome-wide association studies: taxonomy, limitations, challenges, and vision DOI Creative Commons

Noura Aherrahrou,

Hamid Tairi, Zouhair Aherrahrou

и другие.

Briefings in Bioinformatics, Год журнала: 2024, Номер 25(5)

Опубликована: Июль 25, 2024

Abstract Genome-wide association studies (GWAS) serve as a crucial tool for identifying genetic factors associated with specific traits. However, ethical constraints prevent the direct exchange of information, prompting need privacy preservation solutions. To address these issues, earlier works are based on cryptographic mechanisms such homomorphic encryption, secure multi-party computing, and differential privacy. Very recently, federated learning has emerged promising solution enabling collaborative GWAS computations. This work provides an extensive overview existing methods preserving, main focus distributed approaches. survey comprehensive analysis challenges faced by methods, their limitations, insights into designing efficient

Язык: Английский

TMFN: a text-based multimodal fusion network with multi-scale feature extraction and unsupervised contrastive learning for multimodal sentiment analysis DOI Creative Commons
Junsong Fu, Youjia Fu,

Huixia Xue

и другие.

Complex & Intelligent Systems, Год журнала: 2025, Номер 11(2)

Опубликована: Янв. 7, 2025

Multimodal sentiment analysis (MSA) is crucial in human-computer interaction. Current methods use simple sub-models for feature extraction, neglecting multi-scale features and the complexity of emotions. Text, visual, audio each have unique characteristics MSA, with text often providing more emotional cues due to its rich semantics. However, current approaches treat modalities equally, not maximizing text's advantages. To solve these problems, we propose a novel method named text-based multimodal fusion network extraction unsupervised contrastive learning (TMFN). Firstly, an innovative pyramid-structured method, which captures modal data through convolution kernels different sizes strengthens key channel attention mechanism. Second, design module, consists gating unit (TGU) channel-wise transformer (TCAT). TGU responsible guiding regulating process other information, while TCAT improves model's ability capture relationship between achieves effective Finally, further optimize representation fused features, introduce deeply explore intrinsic connection features. Experimental results show that our proposed model outperforms state-of-the-art models MSA on two benchmark datasets.

Язык: Английский

Процитировано

1

Continual and wisdom learning for federated learning: A comprehensive framework for robustness and debiasing DOI
Saeed Iqbal, Xiaopin Zhong, Muhammad Attique Khan

и другие.

Information Processing & Management, Год журнала: 2025, Номер 62(5), С. 104157 - 104157

Опубликована: Апрель 9, 2025

Язык: Английский

Процитировано

1

VeriChroma: Ownership Verification for Federated Models via RGB Filters DOI
Hewang Nie, Songfeng Lu,

Mu Wang

и другие.

Lecture notes in computer science, Год журнала: 2024, Номер unknown, С. 332 - 345

Опубликована: Янв. 1, 2024

Язык: Английский

Процитировано

6

Securing IP in edge AI: neural network watermarking for multimodal models DOI
Hewang Nie, Songfeng Lu

Applied Intelligence, Год журнала: 2024, Номер 54(21), С. 10455 - 10472

Опубликована: Авг. 16, 2024

Язык: Английский

Процитировано

5

Using binary hash tree-based encryption to secure a deep learning model and generated images for social media applications DOI

Soniya Rohhila,

Amit Kumar Singh

Future Generation Computer Systems, Год журнала: 2025, Номер unknown, С. 107722 - 107722

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

0

Manet: motion-aware network for video action recognition DOI Creative Commons
Xiaoyang Li,

Yang Wenzhu,

Kanglin Wang

и другие.

Complex & Intelligent Systems, Год журнала: 2025, Номер 11(3)

Опубликована: Фев. 6, 2025

Язык: Английский

Процитировано

0

Mamba meets tracker: exploiting token aggregation and diffusion for robust unmanned aerial vehicles tracking DOI Creative Commons
Guocai Du,

Peiyong Zhou,

Nurbiya Yadikar

и другие.

Complex & Intelligent Systems, Год журнала: 2025, Номер 11(4)

Опубликована: Март 10, 2025

Язык: Английский

Процитировано

0

Model authentication hashing: Identifying pirated neural network models DOI
Cheng Xiong, Guorui Feng, Yunlong Sun

и другие.

Expert Systems with Applications, Год журнала: 2025, Номер unknown, С. 127706 - 127706

Опубликована: Апрель 1, 2025

Язык: Английский

Процитировано

0

Backdoor attacks and defense mechanisms in federated learning: A survey DOI
Zhaozheng Li, Jiahe Lan, Zheng Yan

и другие.

Information Fusion, Год журнала: 2025, Номер unknown, С. 103248 - 103248

Опубликована: Май 1, 2025

Язык: Английский

Процитировано

0

Beyond protection: Unveiling neural network copyright trading DOI
Xuemei Yuan, Hewang Nie

Knowledge-Based Systems, Год журнала: 2025, Номер unknown, С. 113617 - 113617

Опубликована: Май 1, 2025

Язык: Английский

Процитировано

0