Communications in computer and information science, Год журнала: 2024, Номер unknown, С. 108 - 114
Опубликована: Дек. 29, 2024
Язык: Английский
Communications in computer and information science, Год журнала: 2024, Номер unknown, С. 108 - 114
Опубликована: Дек. 29, 2024
Язык: Английский
Ironmaking & Steelmaking Processes Products and Applications, Год журнала: 2025, Номер unknown
Опубликована: Янв. 9, 2025
In the pursuit of intelligent manufacturing goals, industrial big data technology has emerged as a key enabler in advancing steel industry. Traditional rolling force (RF) models typically rely on from individual cold production lines, leading to lower accuracy and limited interpretability. To overcome this, an platform been developed, offering complete reliable dataset enhance performance RF prediction models. A data-driven machine learning framework is proposed, employing improved sparrow search algorithm optimise weighting parameters broad system. The Shapley additive explanations method further applied elucidate contributions multivariate features hot rolling, thereby enhancing interpretability predictions. proposed was validated line plant, demonstrating significant advantages over existing state-of-the-art Furthermore, this study demonstrates extensively elaborates impact predictive Industrial application validation that accurately predicts at head cold-rolled strip, enabling feedforward compensation for bending effectively improving flatness defects, confirming method's efficacy.
Язык: Английский
Процитировано
1Expert Systems with Applications, Год журнала: 2025, Номер 269, С. 126447 - 126447
Опубликована: Янв. 9, 2025
Язык: Английский
Процитировано
0Engineering Management Journal, Год журнала: 2025, Номер unknown, С. 1 - 13
Опубликована: Фев. 21, 2025
Язык: Английский
Процитировано
0International Journal of Production Research, Год журнала: 2025, Номер unknown, С. 1 - 16
Опубликована: Апрель 7, 2025
Язык: Английский
Процитировано
0The International Journal of Advanced Manufacturing Technology, Год журнала: 2025, Номер unknown
Опубликована: Апрель 16, 2025
Язык: Английский
Процитировано
0Expert Systems with Applications, Год журнала: 2025, Номер unknown, С. 127713 - 127713
Опубликована: Апрель 1, 2025
Язык: Английский
Процитировано
0Expert Systems with Applications, Год журнала: 2024, Номер 256, С. 124947 - 124947
Опубликована: Авг. 3, 2024
Язык: Английский
Процитировано
2Applied Energy, Год журнала: 2024, Номер 379, С. 124919 - 124919
Опубликована: Ноя. 19, 2024
Язык: Английский
Процитировано
2Measurement, Год журнала: 2024, Номер unknown, С. 116516 - 116516
Опубликована: Дек. 1, 2024
Язык: Английский
Процитировано
1Applied Sciences, Год журнала: 2024, Номер 14(24), С. 11685 - 11685
Опубликована: Дек. 14, 2024
Steel structures face significant challenges in long-term maintenance because of complex and unstable service environments. Fortunately, the digital twin technique offers an excellent solution by creating a model continuously updating it with real-time monitoring data. To determine development application status steel structures, review drawn on latest literature from past fifteen years was conducted. The bibliometric analysis innovation discussion these studies primarily focused publication details, keyword information, specifics. Additionally, attention given to evolution definitions, modeling methodologies, fields. results indicate that has made advancements both its definition thanks worldwide contributions. Meanwhile, this also demonstrates advantages applications material deformation, structural monitoring, infrastructure maintenance, fatigue assessment. Based existing literature, future should focus innovation, expansion, performance optimization.
Язык: Английский
Процитировано
0