Applied Physics A, Год журнала: 2024, Номер 130(8)
Опубликована: Июль 25, 2024
Язык: Английский
Applied Physics A, Год журнала: 2024, Номер 130(8)
Опубликована: Июль 25, 2024
Язык: Английский
Expert Systems with Applications, Год журнала: 2025, Номер 268, С. 126320 - 126320
Опубликована: Янв. 5, 2025
Язык: Английский
Процитировано
2The Journal of Supercomputing, Год журнала: 2025, Номер 81(2)
Опубликована: Янв. 6, 2025
Язык: Английский
Процитировано
1iScience, Год журнала: 2024, Номер 27(8), С. 110561 - 110561
Опубликована: Июль 22, 2024
Rime optimization algorithm (RIME) encounters issues such as an imbalance between exploitation and exploration, susceptibility to local optima, low convergence accuracy when handling problems. This paper introduces a variant of RIME called IRIME address these drawbacks. integrates the soft besiege (SB) composite mutation strategy (CMS) restart (RS). To comprehensively validate IRIME's performance, IEEE CEC 2017 benchmark tests were conducted, comparing it against many advanced algorithms. The results indicate that performance is best. In addition, applying in four engineering problems reflects solving practical Finally, proposes binary version, bIRIME, can be applied feature selection bIRIMR performs well on 12 low-dimensional datasets 24 high-dimensional datasets. It outperforms other algorithms terms number subsets classification accuracy. conclusion, bIRIME has great potential selection.
Язык: Английский
Процитировано
4International Journal of Data Science and Analytics, Год журнала: 2025, Номер unknown
Опубликована: Янв. 8, 2025
Язык: Английский
Процитировано
0International Journal of Computational Intelligence Systems, Год журнала: 2025, Номер 18(1)
Опубликована: Фев. 11, 2025
Язык: Английский
Процитировано
0Journal of Food Composition and Analysis, Год журнала: 2025, Номер unknown, С. 107354 - 107354
Опубликована: Фев. 1, 2025
Язык: Английский
Процитировано
0Journal of Physics Conference Series, Год журнала: 2025, Номер 2998(1), С. 012024 - 012024
Опубликована: Апрель 1, 2025
Abstract Choosing descriptors is a crucial aspect of improving QSAR (Quantitative Structure-Activity Relationship) models, especially when it comes to precisely forecasting chemical biodegradability. As cheminformatics advances, the handling large molecular datasets introduces challenges due high dimensionality created by numerous descriptors. This study presents Chaotic Adaptive Somersault Factor Binary Manta Ray Foraging Optimization (CASF-BMRFO) algorithm, designed optimize descriptor selection and boost model performance. By integrating innovative techniques such as Piecewise map nonlinear time-varying Sigmoid transfer function, CASF-BMRFO achieves improved accuracy efficiency, particularly for complex biodegradability datasets. The algorithms test on high-dimensional biodegradation data, CASF-BMRFO6 variant showed substantial performance gains, achieving faster convergence while reducing selected 75%. Additionally, enhanced prediction 11.59%, demonstrating its efficacy in selecting relevant potential broader application other classification tasks. These findings highlight CASF-BMRFO6’s effectiveness feature encourage further exploration adaptability across diverse data-driven domains.
Язык: Английский
Процитировано
0Knowledge-Based Systems, Год журнала: 2025, Номер unknown, С. 113695 - 113695
Опубликована: Май 1, 2025
Язык: Английский
Процитировано
0Applied Physics A, Год журнала: 2024, Номер 130(8)
Опубликована: Июль 25, 2024
Язык: Английский
Процитировано
0