An improved extreme learning machine model for predicting the mechanical property of AZ80 magnesium alloy DOI

Jiahan Gu,

Song Jiang,

Wenbo Guo

и другие.

Applied Physics A, Год журнала: 2024, Номер 130(8)

Опубликована: Июль 25, 2024

Язык: Английский

Reinforcement learning guided auto-select optimization algorithm for feature selection DOI
Hongbo Zhang, Xiaofeng Yue,

Xueliang Gao

и другие.

Expert Systems with Applications, Год журнала: 2025, Номер 268, С. 126320 - 126320

Опубликована: Янв. 5, 2025

Язык: Английский

Процитировано

2

Optimizing feature selection and remote sensing classification with an enhanced machine learning method DOI Creative Commons
Ahmed A. Ewees,

Mohammed Mujib Alshahrani,

Abdullah Alharthi

и другие.

The Journal of Supercomputing, Год журнала: 2025, Номер 81(2)

Опубликована: Янв. 6, 2025

Язык: Английский

Процитировано

1

IRIME: Mitigating exploitation-exploration imbalance in RIME optimization for feature selection DOI Creative Commons

Jinpeng Huang,

Yi Chen, Ali Asghar Heidari

и другие.

iScience, Год журнала: 2024, Номер 27(8), С. 110561 - 110561

Опубликована: Июль 22, 2024

Rime optimization algorithm (RIME) encounters issues such as an imbalance between exploitation and exploration, susceptibility to local optima, low convergence accuracy when handling problems. This paper introduces a variant of RIME called IRIME address these drawbacks. integrates the soft besiege (SB) composite mutation strategy (CMS) restart (RS). To comprehensively validate IRIME's performance, IEEE CEC 2017 benchmark tests were conducted, comparing it against many advanced algorithms. The results indicate that performance is best. In addition, applying in four engineering problems reflects solving practical Finally, proposes binary version, bIRIME, can be applied feature selection bIRIMR performs well on 12 low-dimensional datasets 24 high-dimensional datasets. It outperforms other algorithms terms number subsets classification accuracy. conclusion, bIRIME has great potential selection.

Язык: Английский

Процитировано

4

An effective initialization for Fuzzy PSO with Greedy Forward Selection in feature selection DOI
Keerthi Gabbi Reddy, Deepasikha Mishra

International Journal of Data Science and Analytics, Год журнала: 2025, Номер unknown

Опубликована: Янв. 8, 2025

Язык: Английский

Процитировано

0

Parameter Adaptive Manta Ray Foraging Optimization for Global Continuous Optimization Problems and Parameter Estimation of Solar Photovoltaic Models DOI Creative Commons
Zhentao Tang, Kaiyu Wang,

Y. Yao

и другие.

International Journal of Computational Intelligence Systems, Год журнала: 2025, Номер 18(1)

Опубликована: Фев. 11, 2025

Язык: Английский

Процитировано

0

Research on millet origin identification model based on improved parrot optimizer optimized regularized extreme learning machine DOI
Peng Gao, Na Wang, Yang Lü

и другие.

Journal of Food Composition and Analysis, Год журнала: 2025, Номер unknown, С. 107354 - 107354

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

0

Enhancing QSAR Model Accuracy for Biodegradability Prediction Using Chaotic Adaptive Binary Manta Ray Foraging Optimization DOI Open Access
Najam Aziz, Norfadzlia Mohd Yusof, Yogan Jaya Kumar

и другие.

Journal of Physics Conference Series, Год журнала: 2025, Номер 2998(1), С. 012024 - 012024

Опубликована: Апрель 1, 2025

Abstract Choosing descriptors is a crucial aspect of improving QSAR (Quantitative Structure-Activity Relationship) models, especially when it comes to precisely forecasting chemical biodegradability. As cheminformatics advances, the handling large molecular datasets introduces challenges due high dimensionality created by numerous descriptors. This study presents Chaotic Adaptive Somersault Factor Binary Manta Ray Foraging Optimization (CASF-BMRFO) algorithm, designed optimize descriptor selection and boost model performance. By integrating innovative techniques such as Piecewise map nonlinear time-varying Sigmoid transfer function, CASF-BMRFO achieves improved accuracy efficiency, particularly for complex biodegradability datasets. The algorithms test on high-dimensional biodegradation data, CASF-BMRFO6 variant showed substantial performance gains, achieving faster convergence while reducing selected 75%. Additionally, enhanced prediction 11.59%, demonstrating its efficacy in selecting relevant potential broader application other classification tasks. These findings highlight CASF-BMRFO6’s effectiveness feature encourage further exploration adaptability across diverse data-driven domains.

Язык: Английский

Процитировано

0

ESARSA-MRFO-FS: Optimizing Manta-ray Foraging Optimizer using Expected-SARSA reinforcement learning for features selection DOI
Yousry AbdulAzeem, Hossam Magdy Balaha, Amna Bamaqa

и другие.

Knowledge-Based Systems, Год журнала: 2025, Номер unknown, С. 113695 - 113695

Опубликована: Май 1, 2025

Язык: Английский

Процитировано

0

An improved extreme learning machine model for predicting the mechanical property of AZ80 magnesium alloy DOI

Jiahan Gu,

Song Jiang,

Wenbo Guo

и другие.

Applied Physics A, Год журнала: 2024, Номер 130(8)

Опубликована: Июль 25, 2024

Язык: Английский

Процитировано

0