Rock cutting image recognition based on color and texture feature fusion DOI Open Access
Yihao Zhang, Zhongbing Li, Xiong Han

и другие.

Journal of Physics Conference Series, Год журнала: 2024, Номер 2901(1), С. 012026 - 012026

Опубликована: Ноя. 1, 2024

Abstract In the realm of oil exploration, there is an increasing demand for precise lithological analysis, particularly in rapid and accurate identification fine rock cutting images. Therefore, a novel image recognition method based on fusion color texture features proposed. This utilizes histogram grayscale co-occurrence matrix techniques to extract from target images, respectively. Compared with traditional single-feature methods, this integrated feature can greatly improve accuracy fragment ensure more classification by designing structure set. The model established using support vector machine (SVM) classifier realize automatic cuttings not only reduces time labor intensity manual operation, but also improves efficiency speed which meets needs modern efficient drilling operations. More detailed stratigraphic data be provided high precision chip lithology analysis. These have important reference value geologists analyze distribution, determine location distribution underground gas layers, optimize decisions operation plans. Experimental results show that achieves overall than 90% task detecting 126 images conglomerate, 153 mudstone, 150 sandstone, up 94% mudstone sandstone. It proved proposed paper better classify conglomerate chips accuracy.

Язык: Английский

Identifying Human Factors in Aviation Accidents with Natural Language Processing and Machine Learning Models DOI Creative Commons
Flávio L. Lázaro,

Tomás Madeira,

Rui Melício

и другие.

Aerospace, Год журнала: 2025, Номер 12(2), С. 106 - 106

Опубликована: Янв. 31, 2025

The use of machine learning techniques to identify contributing factors in air incidents has grown significantly, helping and prevent accidents improve safety. In this paper, classifier models such as LS, KNN, Random Forest, Extra Trees, XGBoost, which have proven effective classification tasks, are used analyze incident reports parsed with natural language processing (NLP) techniques, uncover hidden patterns future incidents. Metrics precision, recall, F1-score accuracy assess the degree correctness predictive models. adjustment hyperparameters is obtained Grid Search Bayesian Optimization. KNN had best rating, followed by Forest Trees. results indicate that tools classify helps their root cause, improving situational decision-making.

Язык: Английский

Процитировано

1

Transformer-based short-term traffic forecasting model considering traffic spatiotemporal correlation DOI Creative Commons

Ande Chang,

Yuting Ji, Yiming Bie

и другие.

Frontiers in Neurorobotics, Год журнала: 2025, Номер 19

Опубликована: Янв. 23, 2025

Traffic forecasting is crucial for a variety of applications, including route optimization, signal management, and travel time estimation. However, many existing prediction models struggle to accurately capture the spatiotemporal patterns in traffic data due its inherent nonlinearity, high dimensionality, complex dependencies. To address these challenges, short-term model, Trafficformer, proposed based on Transformer framework. The model first uses multilayer perceptron extract features from historical data, then enhances spatial interactions through Transformer-based encoding. By incorporating road network topology, mask filters out noise irrelevant interactions, improving accuracy. Finally, speed predicted using another perceptron. In experiments, Trafficformer evaluated Seattle Loop Detector dataset. It compared with six baseline methods, Mean Absolute Error, Percentage Root Square Error used as metrics. results show that not only has higher accuracy, but also can effectively identify key sections, great potential intelligent control optimization refined resource allocation.

Язык: Английский

Процитировано

0

Prediction of container throughput at Thailand’s major ports with error correction and parameter selection techniques emphasizes optimal smoothing period DOI Open Access
Thoranin Sujjaviriyasup

Maritime Business Review, Год журнала: 2025, Номер unknown

Опубликована: Фев. 24, 2025

Purpose A combined approach of additive Holt–Winters, support vector regression, simple moving average and generalized simulated annealing with error correction optimal parameter selection techniques emphasizing smoothing period in residual adjustment is developed proposed to predict datasets container throughput at major ports. Design/methodology/approach The Holt–Winters model describes level, trend seasonal patterns provide values residuals. In addition, the fitted predicts a future value. Afterwards, series improved by using more obvious steady Subsequently, regression formulates nonlinear complex function residuals based on parameters describe remaining pattern searches for model. Finally, value are aggregated be Findings applied forecast two ports Thailand. empirical results revealed that outperforms all other models three accuracy measures test datasets. still superior metrics overall additional unseen as well. Consequently, can useful tool supporting decision-making port management Originality/value emphasizes

Язык: Английский

Процитировано

0

Attention based spatial-temporal multi-graph ordinary differential equation network for traffic flow prediction DOI

Y.Z. Chen,

Cheng Li, Shuang Li

и другие.

Engineering Applications of Artificial Intelligence, Год журнала: 2025, Номер 149, С. 110526 - 110526

Опубликована: Март 13, 2025

Язык: Английский

Процитировано

0

A multi-timescale dynamic graph attention network (MTDGAT) for short-term traffic prediction under special events DOI
Lei Tian, Yuxin Ding,

Jingpeng Wen

и другие.

Expert Systems with Applications, Год журнала: 2025, Номер unknown, С. 127649 - 127649

Опубликована: Апрель 1, 2025

Язык: Английский

Процитировано

0

A dynamic multivariate partial grey model based on the traffic flow parameter equation and its application DOI

De-Rong Xie,

Hongli Chen, Huiming Duan

и другие.

Physica A Statistical Mechanics and its Applications, Год журнала: 2024, Номер 656, С. 130204 - 130204

Опубликована: Ноя. 4, 2024

Язык: Английский

Процитировано

2

Single Block Encoder-Decoder Transformer Model for Multi-Step Traffic Flow Forecasting DOI

Mas Omar,

Fitri Yakub, Mohamad Sofian Abu Talip

и другие.

Опубликована: Авг. 10, 2024

Язык: Английский

Процитировано

1

An Improved Quadratic Spline Model Using Curvature Tip Compression - Particle Swarm Optimization to Forecast Accurately the Nonlinear Fluid Calibration Curve DOI Creative Commons
Jalu A. Prakosa,

Norma Alias,

Purwowibowo Purwowibowo

и другие.

IEEE Access, Год журнала: 2024, Номер 12, С. 144519 - 144532

Опубликована: Янв. 1, 2024

Язык: Английский

Процитировано

1

Design of a bi-level PSO based modular neural network for multi-step time series prediction DOI
Wenjing Li, Yonglei Liu, Zhiqian Chen

и другие.

Applied Intelligence, Год журнала: 2024, Номер 54(17-18), С. 8612 - 8633

Опубликована: Июль 1, 2024

Язык: Английский

Процитировано

0

State of Charge Prediction of Power Battery Based on Dual Polarization Equivalent Circuit Model and Improved Joint Algorithm DOI
Weiwei Wang, Wenhao Zhang, Xiaomei Xu

и другие.

Опубликована: Янв. 1, 2024

Язык: Английский

Процитировано

0