Enhanced analysis of large-scale news text data using the bidirectional-Kmeans-LSTM-CNN model DOI Creative Commons
Qingxiang Zeng

PeerJ Computer Science, Год журнала: 2024, Номер 10, С. e2213 - e2213

Опубликована: Авг. 1, 2024

Traditional methods may be inefficient when processing large-scale data in the field of text mining, often struggling to identify and cluster relevant information accurately efficiently. Additionally, capturing nuanced sentiment emotional context within news is challenging with conventional techniques. To address these issues, this article introduces an improved bidirectional-Kmeans-long short-term memory network-convolutional neural network (BiK-LSTM-CNN) model that incorporates semantic analysis for high-dimensional visual extraction media hotspot mining. The BiK-LSTM-CNN comprises four modules: preprocessing, clustering, analysis, itself. By combining components, effectively identifies common features input data, clusters similar articles, analyzes semantics text. This comprehensive approach enhances both accuracy efficiency Experimental results demonstrate compared models such as Transformer, AdvLSTM, NewRNN, achieves improvements macro by 0.50%, 0.91%, 1.34%, respectively. Similarly, recall rates increase 0.51%, 1.24%, 1.26%, while F1 scores improve 0.52%, 1.23%, 1.92%. shows significant time efficiency, further establishing its potential a more effective analyzing

Язык: Английский

Smart Distribution in E-Commerce: Harnessing Machine Learning and Deep Learning Approaches for Improved Logistics DOI Open Access

Krishna Kumaar Ragothaman

International Journal of Computational and Experimental Science and Engineering, Год журнала: 2025, Номер 11(1)

Опубликована: Фев. 28, 2025

The e-commerce receives extreme competition in recent years, significantly with the requirement of facing demands consumers speed, effective and accessibility. distribution systems composes crucial role assurance faster exact delivery products from warehouses to consumers. Due growth globalized e-commerce, there is an increasing demand for classic manageable distributor systems. conventional includes stocking shipping directly fails deliveries tracking orders. Hence, distributors requires integrate parameters such as maintenance records, orders logistics on time without extra costs. above manages issues weather modifications disturbance supply chains multi-channel issues. ML DL algorithms allows business transferring traditional potential data driven techniques. examines earlier real forecasting whereas assess formless feedbacks fashions social media additional innovations. utilization those enhances ability operations, reduction cost increased fulfilment resulting enlarged sector. Moreover, are fine-tuning future enhancement generating capability modifying iterative market transitions needs

Язык: Английский

Процитировано

2

Research on Cross-Border e-Commerce Supply Chain Prediction and Optimization Model Based on Convolutional Neural Network Algorithm DOI Creative Commons

Yajie Zhao,

Bin Gong, Bo Huang

и другие.

Journal of Advanced Computational Intelligence and Intelligent Informatics, Год журнала: 2025, Номер 29(1), С. 215 - 223

Опубликована: Янв. 19, 2025

Enhancing the precision of supply chain management and reducing operational costs are crucial for development cross-border e-commerce market. However, existing research often overlooks demand uncertainty caused by seasonal variations challenges handling returns in logistics. Therefore, this paper proposes a SARIMA-CNN-BiLSTM prediction model that effectively captures both nonlinear characteristics chains. Additionally, incorporating process, distribution optimization is developed with objective minimizing total costs. The solved using an improved whale algorithm. In validation real-world data, achieved mean absolute percentage error reduction 6.479 7.703 compared to convolutional neural network (CNN) BiLSTM models, respectively. Moreover, chosen algorithm reduced cost 231,310 CNY, 62,564 131,632 CNY algorithm, genetic particle swarm optimization, proposed approach provides robust support enterprises enhancing efficiency their operations.

Язык: Английский

Процитировано

1

Pipeline deformation prediction based on multi-source monitoring information and novel data-driven model DOI

Zhen Sun,

Xin Wang, Tianran Han

и другие.

Engineering Structures, Год журнала: 2025, Номер 337, С. 120461 - 120461

Опубликована: Май 9, 2025

Язык: Английский

Процитировано

1

English text and video online resource recommendation based on attention mechanism and GNN DOI Creative Commons

Zunlan Xiao,

Zhimin Yang,

Yin Li

и другие.

Journal of Computational Methods in Sciences and Engineering, Год журнала: 2025, Номер unknown

Опубликована: Фев. 27, 2025

This paper introduces an innovative online resource recommendation system tailored for English text and video content, leveraging the power of attention mechanisms graph neural networks. Given exponential growth learning resources, a crucial challenge lies in delivering personalized efficient recommendations to users. Our study strives optimize both accuracy efficiency these by harnessing synergistic effects GNNs. By collecting analyzing large amount user behavior data, we build user-resource interaction graph. not only contains information between users but also incorporates association providing rich context subsequent recommendations. We introduce mechanism handle node edge graphs. assessing significance various nodes edges process, are able capture users’ interests preferences with greater precision. According experimental integration has led notable improvement system’s accuracy, achieving increase approximately 15%. significant enhancement underscores effectiveness effectively capturing interests. Additionally, leverage networks model intricate structural within With convolution operations, potential relationships resources use process. Experimental results show that combined GNN, coverage increased about 20%, more diverse results. The proposed based on GNN achieved improvements diversity In future, will further explore optimization methods provide services.

Язык: Английский

Процитировано

0

Tourism demand point-interval forecasting using global–local information extraction network DOI
Wenzheng Liu, Hongtao Li, Haina Zhang

и другие.

Information Processing & Management, Год журнала: 2025, Номер 62(5), С. 104161 - 104161

Опубликована: Апрель 9, 2025

Язык: Английский

Процитировано

0

Fusion of KANO theory and Attention-BiLSTM models for user demand analysis and trend prediction DOI
Jinghua Zhao,

Yajie Huang,

Juan Feng

и другие.

Information Fusion, Год журнала: 2025, Номер unknown, С. 103210 - 103210

Опубликована: Апрель 1, 2025

Язык: Английский

Процитировано

0

Dynamic fusion LSTM-Transformer for prediction in energy harvesting from human motions DOI
Ying Gong, Yongzheng Wang, Yijin Xie

и другие.

Energy, Год журнала: 2025, Номер unknown, С. 136192 - 136192

Опубликована: Апрель 1, 2025

Язык: Английский

Процитировано

0

Online transfer assisted LSTM model for fast nonlinear strain error compensation of BOTDA sensing DOI
Yongxi He, Wenjie Gao, Ye Liang

и другие.

Optics & Laser Technology, Год журнала: 2025, Номер 190, С. 113233 - 113233

Опубликована: Май 23, 2025

Язык: Английский

Процитировано

0

A stacking ensemble model for food demand forecasting: A preventative approach to food waste reduction DOI Creative Commons

Asmaa Seyam,

Sujith Samuel Mathew, Bo Du

и другие.

Cleaner Logistics and Supply Chain, Год журнала: 2025, Номер unknown, С. 100225 - 100225

Опубликована: Май 1, 2025

Язык: Английский

Процитировано

0

Data-driven heat pump management: combining machine learning with anomaly detection for residential hot water systems DOI Creative Commons
Manal Rahal, Bestoun S. Ahmed, Roger Renström

и другие.

Neural Computing and Applications, Год журнала: 2025, Номер unknown

Опубликована: Июнь 1, 2025

Язык: Английский

Процитировано

0