Nonlinear Dynamics, Год журнала: 2024, Номер unknown
Опубликована: Дек. 10, 2024
Язык: Английский
Nonlinear Dynamics, Год журнала: 2024, Номер unknown
Опубликована: Дек. 10, 2024
Язык: Английский
Expert Systems with Applications, Год журнала: 2025, Номер unknown, С. 127649 - 127649
Опубликована: Апрель 1, 2025
Язык: Английский
Процитировано
0Measurement Science and Technology, Год журнала: 2024, Номер 35(12), С. 126112 - 126112
Опубликована: Авг. 2, 2024
Abstract Ship-radiated noise (SRN) contains abundant ship characteristic information. The detection and analysis of SRN is very important for target recognition, positioning tracking. However, complex ocean easily interferes with the propagation in water. To achieve a preferable denoising effect, new method proposed. First, decomposed by an improved variational mode decomposition (DVMD) dung beetle optimizer, complexity each intrinsic function after measured fractional order refined composite multiscale fluctuation dispersion entropy (FRCMFDE). Second, distribution characteristics are analyzed, different adaptive division methods used to determine modes, i.e. it divides all modes into clean mildly noisy moderately highly modes. Then, locally weighted scatterplot smoothing dual-tree wavelet transform (IDTCWT) denoise respectively. Finally, denoised obtained reconstructing two groups proposed Rossler, Chen Lorenz signals, signal-to-noise ratio (SNR) 13.0785, 11.9390 12.3775 dB, Compared DVMD-FRCMFDE, DVMD-FRCMFDE-wavelet soft threshold ( WSTD) DVMD-FRCMFDE-IDTCWT, SNR increased 48%, 45.93% 38.76%, respectively, root mean square error 46.55%, 42.76% 30.04%, applied four types SRN. Based on these findings, enhances clarity smoothness phase space attractor, effectively suppresses marine environmental SRN, which provides solid groundwork subsequent processing
Язык: Английский
Процитировано
2Ocean Engineering, Год журнала: 2024, Номер 313, С. 119550 - 119550
Опубликована: Окт. 23, 2024
Язык: Английский
Процитировано
2Sensors, Год журнала: 2024, Номер 24(21), С. 7045 - 7045
Опубликована: Окт. 31, 2024
Mixed non-motorized traffic is largely unaffected by motor vehicle congestion, offering high accessibility and convenience, thus serving as a primary mode of "last-mile" transportation in urban areas. To advance stochastic capacity estimation methods provide reliable assessments roadway capacity, this study proposes model based on power spectral analysis. The treats discrete flow data time-series signal employs parameter to fit patterns. Initially, UAVs video cameras are used capture videos mixed flow. were processed with an image detection algorithm the YOLO convolutional neural network tracking using DeepSORT multi-target model, extracting flow, density, speed, rider characteristics. Then, autocorrelation partial functions employed distinguish among four classical models. parameters optimized minimizing AIC information criterion identify optimal fit. fitted parametric models analyzed transforming them from time domain frequency domain, spectrum then calculated. experimental results show that yields pure EV 2060-3297 bikes/(h·m) bicycle 1538-2460 bikes/(h·m). density-flow calculates 2349-2897 1753-2173 minimal difference between these estimates validates effectiveness proposed model. These findings hold practical significance addressing road congestion.
Язык: Английский
Процитировано
2Ocean Engineering, Год журнала: 2024, Номер 312, С. 119300 - 119300
Опубликована: Сен. 24, 2024
Язык: Английский
Процитировано
1Journal of Cleaner Production, Год журнала: 2024, Номер unknown, С. 143680 - 143680
Опубликована: Сен. 1, 2024
Язык: Английский
Процитировано
0Journal of Cleaner Production, Год журнала: 2024, Номер unknown, С. 143730 - 143730
Опубликована: Сен. 1, 2024
Язык: Английский
Процитировано
0Nonlinear Dynamics, Год журнала: 2024, Номер unknown
Опубликована: Дек. 10, 2024
Язык: Английский
Процитировано
0