A New Breast Cancer Discovery Strategy: A Combined Outlier Rejection Technique and an Ensemble Classification Method DOI Creative Commons
Shereen H. Ali,

Mohamed Shehata

Bioengineering, Год журнала: 2024, Номер 11(11), С. 1148 - 1148

Опубликована: Ноя. 15, 2024

Annually, many people worldwide lose their lives due to breast cancer, making it one of the most prevalent cancers in world. Since disease is becoming more common, early detection cancer essential avoiding serious complications and possibly death as well. This research provides a novel Breast Cancer Discovery (BCD) strategy aid patients by providing prompt sensitive cancer. The two primary steps that form BCD are Step (BCDS) Pre-processing (P

Язык: Английский

A Halton Enhanced Solution-based Human Evolutionary Algorithm for Complex Optimization and Advanced Feature Selection Problems DOI
Mahmoud Abdel-Salam, Amit Chhabra, Malik Braik

и другие.

Knowledge-Based Systems, Год журнала: 2025, Номер unknown, С. 113062 - 113062

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

4

Reinforcement learning guided auto-select optimization algorithm for feature selection DOI
Hongbo Zhang, Xiaofeng Yue,

Xueliang Gao

и другие.

Expert Systems with Applications, Год журнала: 2025, Номер 268, С. 126320 - 126320

Опубликована: Янв. 5, 2025

Язык: Английский

Процитировано

2

An improved Genghis Khan optimizer based on enhanced solution quality strategy for global optimization and feature selection problems DOI
Mahmoud Abdel-Salam, Ahmed Ibrahim Alzahrani,

Fahad Alblehai

и другие.

Knowledge-Based Systems, Год журнала: 2024, Номер 302, С. 112347 - 112347

Опубликована: Авг. 5, 2024

Язык: Английский

Процитировано

14

Integrating Differential Evolution into Gazelle Optimization for advanced global optimization and engineering applications DOI Creative Commons
Saptadeep Biswas, Gyan Singh, Biswajit Maiti

и другие.

Computer Methods in Applied Mechanics and Engineering, Год журнала: 2024, Номер 434, С. 117588 - 117588

Опубликована: Ноя. 29, 2024

Язык: Английский

Процитировано

12

Intelligent and Secure Evolved Framework for Vaccine Supply Chain Management Using Machine Learning and Blockchain DOI
Mahmoud Abdel-Salam, Mohamed Elhoseny,

Ibrahim M. El‐Hasnony

и другие.

SN Computer Science, Год журнала: 2025, Номер 6(2)

Опубликована: Янв. 29, 2025

Язык: Английский

Процитировано

1

An adaptive enhanced human memory algorithm for multi-level image segmentation for pathological lung cancer images DOI
Mahmoud Abdel-Salam, Essam H. Houssein,

Marwa M. Emam

и другие.

Computers in Biology and Medicine, Год журнала: 2024, Номер 183, С. 109272 - 109272

Опубликована: Окт. 16, 2024

Язык: Английский

Процитировано

5

Exploring the anticancer activities of Sulfur and magnesium oxide through integration of deep learning and fuzzy rough set analyses based on the features of Vidarabine alkaloid DOI Creative Commons
Heba Askr, Marwa A. A. Fayed, Heba Mamdouh Farghaly

и другие.

Scientific Reports, Год журнала: 2025, Номер 15(1)

Опубликована: Янв. 17, 2025

Drug discovery and development is a challenging time-consuming process. Laboratory experiments conducted on Vidarabine showed IC50 6.97 µg∕mL, 25.78 ˃ 100 µg∕mL against non-small Lung cancer (A-549), Human Melanoma (A-375), epidermoid Skin carcinoma (skin/epidermis) (A-431) respectively. To address these challenges, this paper presents an Artificial Intelligence (AI) model that combines the capabilities of Deep Learning (DL) to identify potential new drug candidates, Fuzzy Rough Set (FRS) theory determine most important chemical compound features, Explainable (XAI) explain features' importance in last layer, medicinal chemistry rediscover anticancer drugs based natural products like Vidarabine. The proposed aims candidates. By analyzing results from laboratory Vidarabine, identifies Sulfur magnesium oxide (MgO) as agents. selected MgO Interpreting their promising further were validate model's predictions. demonstrated that, while was inactive A-431 cell line (IC50 µg∕mL), exhibited significant activity 4.55 17.29 µg/ml respectively). displayed strong A-549 A-375 lines 3.06 1.86 respectively) better than However, weaker two lines. This emphasizes uncovering hidden features may not be discernible without assistance AI. highlights ability AI discover novel compounds with therapeutic potential, which can significantly impact field discovery. by warrants preclinical studies.

Язык: Английский

Процитировано

0

Multi-strategy improved gazelle optimization algorithm for numerical optimization and UAV path planning DOI Creative Commons
Lu Li, Haonan Zhao, Lixin Lyu

и другие.

Scientific Reports, Год журнала: 2025, Номер 15(1)

Опубликована: Апрель 23, 2025

The Gazelle Optimization Algorithm (GOA) is a recently proposed and widely recognized metaheuristic algorithm. However, it suffers from slow convergence, low precision, tendency to fall into local optima when addressing practical problems. To address these limitations, we propose Multi-Strategy Improved (MIGOA). Key enhancements include population initialization based on an optimal point set, tangent flight search strategy, adaptive step size factor, novel exploration strategies. These improvements collectively enhance GOA's capability, convergence speed, effectively preventing becoming trapped in optima. We evaluated MIGOA using the CEC2017 CEC2020 benchmark test sets, comparing with GOA eight other algorithms. results, validated by Wilcoxon rank-sum Friedman mean rank test, demonstrate that achieves average rankings of 1.80, 2.03, 2.70 (Dim = 30/50/100) 20), respectively, outperforming standard high-performance optimizers. Furthermore, application three-dimensional unmanned aerial vehicle (UAV) path planning problems 2 engineering optimization design further validates its potential solving constrained Experimental results consistently indicate exhibits strong scalability applicability.

Язык: Английский

Процитировано

0

FTDZOA: An Efficient and Robust FS Method with Multi-Strategy Assistance DOI Creative Commons

Fuqiang Chen,

Shitong Ye, Lijuan Xu

и другие.

Biomimetics, Год журнала: 2024, Номер 9(10), С. 632 - 632

Опубликована: Окт. 17, 2024

Feature selection (FS) is a pivotal technique in big data analytics, aimed at mitigating redundant information within datasets and optimizing computational resource utilization. This study introduces an enhanced zebra optimization algorithm (ZOA), termed FTDZOA, for superior feature dimensionality reduction. To address the challenges of ZOA, such as susceptibility to local optimal subsets, limited global search capabilities, sluggish convergence when tackling FS problems, three strategies are integrated into original ZOA bolster its performance. Firstly, fractional order strategy incorporated preserve from preceding generations, thereby enhancing ZOA's exploitation capabilities. Secondly, triple mean point guidance introduced, amalgamating point, random current effectively augment exploration prowess. Lastly, capacity further elevated through introduction differential strategy, which integrates disparities among different individuals. Subsequently, FTDZOA-based method was applied solve 23 problems spanning low, medium, high dimensions. A comparative analysis with nine advanced methods revealed that FTDZOA achieved higher classification accuracy on over 90% secured winning rate exceeding 83% terms execution time. These findings confirm reliable, high-performance, practical, robust method.

Язык: Английский

Процитировано

3

Quadruple Strategy-Driven Hiking Optimization Algorithm for Low and High-Dimensional Feature Selection and Real-World Skin Cancer Classification DOI
Mahmoud Abdel-Salam, Saleh Ali Alomari,

Mohammad H. Almomani

и другие.

Knowledge-Based Systems, Год журнала: 2025, Номер unknown, С. 113286 - 113286

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

0