International Journal of Remote Sensing, Год журнала: 2024, Номер unknown, С. 1 - 28
Опубликована: Окт. 4, 2024
Язык: Английский
International Journal of Remote Sensing, Год журнала: 2024, Номер unknown, С. 1 - 28
Опубликована: Окт. 4, 2024
Язык: Английский
Information Fusion, Год журнала: 2025, Номер unknown, С. 103016 - 103016
Опубликована: Фев. 1, 2025
Язык: Английский
Процитировано
1Journal of Hydrology, Год журнала: 2025, Номер unknown, С. 132808 - 132808
Опубликована: Фев. 1, 2025
Язык: Английский
Процитировано
1European Journal of Agronomy, Год журнала: 2024, Номер 164, С. 127477 - 127477
Опубликована: Дек. 17, 2024
Язык: Английский
Процитировано
5Опубликована: Янв. 1, 2025
Download This Paper Open PDF in Browser Add to My Library Share: Permalink Using these links will ensure access this page indefinitely Copy URL DOI
Язык: Английский
Процитировано
0Expert Systems with Applications, Год журнала: 2025, Номер unknown, С. 126818 - 126818
Опубликована: Фев. 1, 2025
Язык: Английский
Процитировано
0Journal of Marine Science and Engineering, Год журнала: 2025, Номер 13(3), С. 439 - 439
Опубликована: Фев. 25, 2025
Antarctic true-color imagery synthesized using multispectral remote sensing data is effective in reflecting sea ice conditions, which crucial for monitoring. Deep learning has been explored extraction, but traditional convolutional neural network models are constrained by a limited perceptual field, making it difficult to obtain global contextual information from images. A novel model named GEFU-Net, modification of U-Net, presented. The self-established graph reconstruction module employed convert features into and construct the adjacency matrix adaptive average similarity threshold. Graph networks utilized aggregate at each pixel, enabling rapid capture context, enhancing semantic richness features, improving accuracy extraction through reconstruction. Experimental results dataset Ross Sea Antarctic, produced Sentinel-2, demonstrate that our GEFU-Net achieves best performance compared other commonly used segmentation models. Specifically, an 97.52%, Intersection over Union 95.66%, F1-Score 97.78%. Additionally, fewer parameters good inference speed demonstrated, indicating strong potential practical mapping applications.
Язык: Английский
Процитировано
0Energy and AI, Год журнала: 2025, Номер unknown, С. 100486 - 100486
Опубликована: Март 1, 2025
Язык: Английский
Процитировано
0Food Frontiers, Год журнала: 2025, Номер unknown
Опубликована: Март 3, 2025
ABSTRACT Aflatoxin contamination in food and feed is a global concern for safety, posing great threat to human environmental health. It the secondary metabolite mainly produced by Aspergillus flavus ( A. ) parasiticus (A. ). Therefore, it very urgent develop rapid sensitive identification detection methods aflatoxigenic fungi realize early warning risk of aflatoxin from source. This article reviews latest research progress strategy identifying detecting agricultural recent years. The principles applications different techniques determination, including morphological identification, nucleic acid amplification techniques, spectral analysis technology, biosensing, are presented this review. Finally, challenges trends future also discussed. Through fungi, there will be relatively sufficient time do corresponding prevention control measures reduce or even prevent production stage, which beneficial greatly improve safety.
Язык: Английский
Процитировано
0Machine Learning with Applications, Год журнала: 2025, Номер unknown, С. 100635 - 100635
Опубликована: Март 1, 2025
Язык: Английский
Процитировано
0Artificial Intelligence Review, Год журнала: 2025, Номер 58(6)
Опубликована: Март 17, 2025
Язык: Английский
Процитировано
0