Applied Soft Computing, Год журнала: 2024, Номер unknown, С. 112626 - 112626
Опубликована: Дек. 1, 2024
Язык: Английский
Applied Soft Computing, Год журнала: 2024, Номер unknown, С. 112626 - 112626
Опубликована: Дек. 1, 2024
Язык: Английский
Environmental Pollution, Год журнала: 2025, Номер unknown, С. 125748 - 125748
Опубликована: Фев. 1, 2025
Язык: Английский
Процитировано
0Energy Storage and Saving, Год журнала: 2025, Номер unknown
Опубликована: Фев. 1, 2025
Язык: Английский
Процитировано
0Applied Mathematical Modelling, Год журнала: 2025, Номер unknown, С. 116144 - 116144
Опубликована: Апрель 1, 2025
Язык: Английский
Процитировано
0Atmosphere, Год журнала: 2025, Номер 16(5), С. 513 - 513
Опубликована: Апрель 28, 2025
Air pollution poses a pressing global challenge, particularly in rapidly industrializing nations like China where deteriorating air quality critically endangers public health and sustainable development. To address the heterogeneous patterns of across diverse geographical climatic regions, this study proposes novel CNN-LSTM-KAN hybrid deep learning framework for high-precision Quality Index (AQI) time-series prediction. Through systematic analysis multi-city AQI datasets encompassing five representative Chinese metropolises—strategically selected to cover climate zones (subtropical temperate), gradients (coastal inland), topographical variations (plains mountains)—we established three principal methodological advancements. First, Shapiro–Wilk normality testing (p < 0.05) revealed non-Gaussian distribution characteristics observational data, providing statistical justification implementing Gaussian filtering-based noise suppression. Second, our multi-regional validation extended beyond conventional single-city approaches, demonstrating model generalizability distinct environmental contexts. Third, we innovatively integrated Kolmogorov–Arnold Networks (KANs) with attention mechanisms replace traditional fully connected layers, achieving enhanced feature weighting capacity. Comparative experiments demonstrated superior performance 23.6–59.6% reduction Root-Mean-Square Error (RMSE) relative baseline LSTM models, along consistent outperformance over CNN-LSTM hybrids. Cross-regional correlation analyses identified PM2.5/PM10 as dominant predictive factors. The developed exhibited robust generalization capabilities divisions (R2 = 0.92–0.99), establishing reliable decision-support platform regionally adaptive early-warning systems. This provides valuable insights addressing spatial heterogeneity modeling applications.
Язык: Английский
Процитировано
0Applied Soft Computing, Год журнала: 2024, Номер unknown, С. 112626 - 112626
Опубликована: Дек. 1, 2024
Язык: Английский
Процитировано
1