Prediction of multi-task physicochemical indices based on hyperspectral imaging and analysis of the relationship between physicochemical composition and sensory quality of tea DOI
Xinna Jiang,

Xingda Cao,

Quancheng Liu

и другие.

Food Research International, Год журнала: 2025, Номер unknown, С. 116455 - 116455

Опубликована: Апрель 1, 2025

Язык: Английский

Non-destructive origin and ginsenoside analysis of American ginseng via NIR and deep learning DOI
Peng Li, Siqi Wang,

Lin Yu

и другие.

Spectrochimica Acta Part A Molecular and Biomolecular Spectroscopy, Год журнала: 2025, Номер 334, С. 125913 - 125913

Опубликована: Фев. 17, 2025

Язык: Английский

Процитировано

1

Simultaneous detection of citrus internal quality attributes using near-infrared spectroscopy and hyperspectral imaging with multi-task deep learning and instrumental transfer learning DOI
Cheng Li, Jin Chen,

Yuanning Zhai

и другие.

Food Chemistry, Год журнала: 2025, Номер unknown, С. 143996 - 143996

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

0

ATR-FTIR spectroscopy combined with metabolomics to analyze the taste components of boletus bainiugan at different drying temperatures DOI Creative Commons

Guangmei Deng,

Honggao Liu, Jieqing Li

и другие.

Food Chemistry X, Год журнала: 2025, Номер 26, С. 102324 - 102324

Опубликована: Фев. 1, 2025

Boletus bainiugan has a unique flavor profile, its quality is correlated with metabolites. Herein, ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) utilized to characterize the free amino acid and organic of at different drying temperatures. Attenuated total internal reflectance Fourier transform infrared (ATR-FTIR) spectroscopy employed identify various treatment predicted compounds. The metabolome includes 72 acids 64 acids, wherein, 11 important taste components are analyzed changes residual convolutional neural network (ResNet) model achieves 100 % accuracy for distinct treatment. partial least squares regression (PLSR) accurately contents compounds an optimal R2 P 0.975 best predictive deviation (RPD) 4.404. ATR-FTIR coupled metabolomics can be used as good tool estimate enhancers bainiugan.

Язык: Английский

Процитировано

0

Data integrity of food and machine learning: Strategies, advances and prospective DOI
Chenming Li, Jieqing Li,

Yuanzhong Wang

и другие.

Food Chemistry, Год журнала: 2025, Номер unknown, С. 143831 - 143831

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

0

Prediction of multi-task physicochemical indices based on hyperspectral imaging and analysis of the relationship between physicochemical composition and sensory quality of tea DOI
Xinna Jiang,

Xingda Cao,

Quancheng Liu

и другие.

Food Research International, Год журнала: 2025, Номер unknown, С. 116455 - 116455

Опубликована: Апрель 1, 2025

Язык: Английский

Процитировано

0