Rapid identification of horse oil adulteration based on deep learning infrared spectroscopy detection method DOI
Lingling Kuang,

Xuecong Tian,

Ying Hua Su

и другие.

Spectrochimica Acta Part A Molecular and Biomolecular Spectroscopy, Год журнала: 2024, Номер 330, С. 125604 - 125604

Опубликована: Дек. 31, 2024

Язык: Английский

Rapid Quantitative Determination of Adulteration of Camellia Oil Using Portable Raman Spectroscopy and Chemometrics DOI Open Access

Boxue Chang,

Zhen Li, Kaidi Ji

и другие.

Processes, Год журнала: 2025, Номер 13(2), С. 456 - 456

Опубликована: Фев. 8, 2025

Over the past decade, Raman spectroscopy and chemometrics have been extensively utilized in food industry for research development of new products but failed to establish a strong foothold quality control assessment items. To bridge this gap, we introduce novel application capable swiftly identifying free fatty acids (FFAs) cooking oil quantifying adulteration. This advanced method was validated using camellia oil, highly esteemed China various Asian countries known its nutritional richness diverse culinary applications. With growing popularity among high-end consumers Asia, has increasingly become target adulteration, causing dissatisfaction both genuine producers. In study, employed characterize FFA profiles samples, complemented by principal component analysis (PCA) partial least squares-discriminant (PLS-DA) sample categorization adulteration detection oil. By segregating from other vegetable oils differentiating adulterated samples squares (PLS) method, achieved high determination coefficient (R2) over 0.98 low root mean square error prediction (RMSEP) less than 1.45%. These findings offer robust predictive model rapid assessment, potentially augmenting traditional qualitative tests streamlining sampling procedures industry.

Язык: Английский

Процитировано

0

Identification of Camellia Oil Adulteration With Excitation-Emission Matrix Fluorescence Spectra and Deep Learning DOI
Chaojie Wei, Zhao‐Jun Wei,

Yanna Jiao

и другие.

Journal of Fluorescence, Год журнала: 2025, Номер unknown

Опубликована: Март 10, 2025

Язык: Английский

Процитировано

0

Detection Technologies, and Machine Learning in Food: Recent Advances and Future Trends DOI
Qiong He, Heng-Yu Huang,

Yuanzhong Wang

и другие.

Food Bioscience, Год журнала: 2024, Номер unknown, С. 105558 - 105558

Опубликована: Ноя. 1, 2024

Язык: Английский

Процитировано

1

Rapid identification of horse oil adulteration based on deep learning infrared spectroscopy detection method DOI
Lingling Kuang,

Xuecong Tian,

Ying Hua Su

и другие.

Spectrochimica Acta Part A Molecular and Biomolecular Spectroscopy, Год журнала: 2024, Номер 330, С. 125604 - 125604

Опубликована: Дек. 31, 2024

Язык: Английский

Процитировано

1