Explainability and Interpretability Concepts for Edge AI Systems DOI Creative Commons

Ovidiu Vermesan,

Vincenzo Piuri, Fabio Scotti

и другие.

River Publishers eBooks, Год журнала: 2024, Номер unknown, С. 197 - 227

Опубликована: Фев. 7, 2024

The increased complexity of artificial intelligence (AI), machine learning (ML) and deep (DL) methods, models, training data to satisfy industrial application needs has emphasised the need for AI model providing explainability interpretability.Model Explainability aims commu nicate reasoning AI/ML/DL technology end users, while interpretability focuses on in-powering transparency so that users will understand precisely why how a generates its results.Edge AI, which combines Internet Things (IoT) edge com puting enable real-time collection, processing, analytics, decisionmaking, introduces new challenges acheiving explainable interpretable methods.This is due compromises among performance, constrained resources, complexity, power consumption, lack bench marking standardisation in environments.This chapter presents state play inter pretability methods techniques, discussing different benchmarking approaches highlighting state-of-the-art development directions.

Язык: Английский

Explainable Artificial Intelligence (XAI) DOI

Mitra Tithi Dey

Advances in environmental engineering and green technologies book series, Год журнала: 2024, Номер unknown, С. 333 - 362

Опубликована: Окт. 16, 2024

Explainable AI (XAI) is important in situations where decisions have significant effects on the results to make systems more reliable, transparent, and people understand how work. In this chapter, an overview of AI, its evolution are discussed, emphasizing need for robust policy regulatory frameworks responsible deployment. Then key concept use XAI models been discussed. This work highlights XAI's significance sectors like healthcare, finance, transportation, retail, supply chain management, robotics, manufacturing, legal criminal justice, etc. profound human societal impacts. Then, with integrated IoT renewable energy management scope smart cities addressed. The study particularly focuses implementations solutions, specifically solar power integration, addressing challenges ensuring transparency, accountability, fairness AI-driven decisions.

Язык: Английский

Процитировано

136

Do the benefits outweigh the disadvantages? Exploring the role of artificial intelligence in renewable energy DOI
Meng Qin, Wei Hu, Xinzhou Qi

и другие.

Energy Economics, Год журнала: 2024, Номер 131, С. 107403 - 107403

Опубликована: Фев. 12, 2024

Язык: Английский

Процитировано

53

Blockchain and Artificial Intelligence (AI) integration for revolutionizing security and transparency in finance DOI
Nitin Liladhar Rane, Saurabh Choudhary,

Jayesh Rane

и другие.

SSRN Electronic Journal, Год журнала: 2023, Номер unknown

Опубликована: Янв. 1, 2023

The convergence of Blockchain technology and Artificial Intelligence (AI) is exerting a transformative influence, ushering in new epoch security transparency within the financial sector. This amalgamation effectively addresses pivotal challenges faced by conventional systems, presenting inventive solutions to heighten efficiency, diminish fraud, amplify transparency. Blockchain, functioning as decentralized tamper-resistant ledger, introduces paradigm shift transactions. Its capacity establish an unalterable record transactions ensures that once data recorded, it remains impervious modification, thereby furnishing unparalleled level security. inherent attribute positions optimal choice for reinforcing systems against cyber threats fraudulent activities. On other hand, AI contributes predictive analytics, machine learning, automation forefront operations. integration finance enables real-time analysis, risk assessment, decision-making, optimizing processes elevating overall efficiency. When amalgamated with augments precision dependability data, cultivating more secure transparent ecosystem. A aspect this streamlining Know Your Customer (KYC) Anti-Money Laundering (AML) processes. nature facilitates storage customer mitigating identity theft, while algorithms adeptly analyze extensive datasets pinpoint flag suspicious not only but also adherence regulatory requirements. Smart contracts, distinctive feature automate enforce contractual agreements, diminishing reliance on intermediaries minimizing probability human error. can be seamlessly integrated into these contracts enhance their adaptability responsiveness evolving market conditions, further refining ushered all stakeholders have access singular version truth, fostering trust Furthermore, incorporation fraud detection management heightens proactive identification potential threats, safeguarding institutions clientele. As increasingly embrace integration, industry stands brink revolution safeguards existing paves way innovative efficient ecosystems.

Язык: Английский

Процитировано

29

Explainable Artificial Intelligence (XAI) Approaches for Transparency and Accountability in Financial Decision-Making DOI
Nitin Liladhar Rane, Saurabh Choudhary,

Jayesh Rane

и другие.

SSRN Electronic Journal, Год журнала: 2023, Номер unknown

Опубликована: Янв. 1, 2023

Recently, there has been a growing trend in incorporating Artificial Intelligence (AI) into financial decision-making, prompting concerns about the transparency and accountability of these intricate systems. This study investigates impact Explainable (XAI) approaches alleviating improving decision-making processes. The paper commences by outlining current landscape AI applications finance, underscoring complex opaque nature advanced machine learning models. lack interpretability models presents significant challenge, as stakeholders, regulators, end-users often struggle to comprehend reasoning behind AI-driven decisions. opacity raises questions regarding trust, particularly critical scenarios. primary focus research centers on analysis implementation XAI techniques introduce Various methods, including rule-based systems, model-agnostic approaches, interpretable models, are scrutinized for their effectiveness producing understandable explanations explores how can be tailored meet distinct requirements domain, where is essential regulatory compliance stakeholder confidence. Moreover, delves potential mechanisms within institutions. By offering model outputs, not only enhances but also empowers professionals identify rectify biases, errors, or unethical behaviour algorithms. promoting accountability, addresses ethical facilitates responsible trustworthy deployment sector. This, turn, contributes advancement fair, reliable, secure

Язык: Английский

Процитировано

27

Synergistic assessment of multi-scenario urban waterlogging through data-driven decoupling analysis in high-density urban areas: A case study in Shenzhen, China DOI
Shiqi Zhou,

Weiyi Jia,

Mo Wang

и другие.

Journal of Environmental Management, Год журнала: 2024, Номер 369, С. 122330 - 122330

Опубликована: Сен. 3, 2024

Язык: Английский

Процитировано

11

A comprehensive review on financial explainable AI DOI Creative Commons

Wei Jie Yeo,

Wihan van der Heever, Rui Mao

и другие.

Artificial Intelligence Review, Год журнала: 2025, Номер 58(6)

Опубликована: Март 29, 2025

Язык: Английский

Процитировано

2

State-Owned Enterprises: A Bibliometric Review and Research Agenda DOI Creative Commons
Claudia Curi, Paolo Mancuso,

Alessandro Scarpa

и другие.

Finance research letters, Год журнала: 2025, Номер unknown, С. 106749 - 106749

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

1

Exploring explainable AI methods for bird sound-based species recognition systems DOI
Nabanita Das,

Neelamadhab Padhy,

Nilanjan Dey

и другие.

Multimedia Tools and Applications, Год журнала: 2024, Номер 83(24), С. 64223 - 64253

Опубликована: Янв. 15, 2024

Язык: Английский

Процитировано

6

Systematic analysis of the blockchain in the energy sector: Trends, issues, and future directions DOI

Chaoqun Ma,

Yu-Tian Lei, Yi‐Shuai Ren

и другие.

Telecommunications Policy, Год журнала: 2023, Номер 48(2), С. 102677 - 102677

Опубликована: Окт. 20, 2023

Язык: Английский

Процитировано

13

Artificial Intelligence (AI) in the Financial Sector DOI Creative Commons

Ririn Riani

Digital Economics Review., Год журнала: 2024, Номер 1(1)

Опубликована: Март 26, 2024

This study aims to see the development of research on topic "AI Finance" and plans that can be carried out based journals published theme. uses qualitative method with bibliometric analysis approach. The data used is secondary theme which comes from Dimension database a total 127 journal articles. Then, processed analyzed using VosViewer application aim knowing map in world. results found author mapping authors who most were Bhattacharjee A; Al-Gasaymeh A.S; Arakpogun E.O; Wang X; Sharma S; Arner D.W; Yang J; Krishna S.H; Khan Singh R; Bansal Raffinetti E; Marwala T. Furthermore, keyword mapping, there are 5 clusters words development; challenge, accounting, opportunity, economy, blockchain, use. path topics related AI Finance Islamic Finance, Enterprise Development Behavioral Green AI, Access Accounting.

Язык: Английский

Процитировано

5