Triple Bottom Line and Decision-Making: An Investigation into the Concept of Confluence DOI
Konstantina Ragazou, Constantin Zopounidis,

Alexandros Garefalakis

и другие.

Multiple criteria decision making, Год журнала: 2024, Номер unknown, С. 1 - 15

Опубликована: Янв. 1, 2024

Язык: Английский

Does natural resources rent promote carbon neutrality: The role of digital finance DOI

Jinyiran Chen,

Yuwei Chen

Resources Policy, Год журнала: 2024, Номер 92, С. 105047 - 105047

Опубликована: Май 1, 2024

Язык: Английский

Процитировано

8

Institutional Environment, Credit Risk Expectations, and Firms’ Investment Strategies DOI
Xiaohui Wei, Jian Li, Yongping Li

и другие.

Finance research letters, Год журнала: 2025, Номер unknown, С. 107371 - 107371

Опубликована: Апрель 1, 2025

Язык: Английский

Процитировано

0

Digital Transformation–Productivity Nexus: Platform Integration and Enterprise Performance DOI
Sihan Liu

Finance research letters, Год журнала: 2025, Номер unknown, С. 107420 - 107420

Опубликована: Апрель 1, 2025

Язык: Английский

Процитировано

0

Role of Corporate Governance and Green Process Innovation Toward Firm Financial Performance DOI
Ke Gao,

Bingjun Zhou,

Rashid Mehmood

и другие.

Palgrave studies in impact finance, Год журнала: 2024, Номер unknown, С. 263 - 280

Опубликована: Янв. 1, 2024

Язык: Английский

Процитировано

0

PR-FCNN: a data-driven hybrid approach for predicting PM2.5 concentration DOI Creative Commons
Syed Azeem Inam, Abdullah Ayub Khan, Tehseen Mazhar

и другие.

Discover Artificial Intelligence, Год журнала: 2024, Номер 4(1)

Опубликована: Ноя. 3, 2024

The atmosphere's fine articulate Matter (PM2.5) poses various health-related risks. Even though multiple efforts have been made to lower the emissions of these substances, mortality rate is continuously increasing, requiring immediate inclination scientific community towards design and development advanced predictive models. Conventional statistical approaches become dormant due their limitations in capturing innate relationships between pollutants, particularly for predicting PM2.5 concentrations. In contrast, machine deep learning techniques shown great potential forecasting air quality, providing more accuracy than its predecessor techniques. present study investigates utilization hybrid by integrating models with improve prediction capabilities concentration. It uses datasets from World Air Quality Index (WAQI) State Global (SOGA) analyze performance on both daily annual data, respectively. This ensures model's effectiveness a diversified dataset. implements Random Forest (RF), Polynomial Regression (PR), XGBoost, Extra Tree Regressor (ETR) coupled Fully Connected Neural Network (FCNN), Long Short-Term Memory (LSTM), Bi-directional LSTM (Bi-LSTM) obtaining optimized results. Finally, after thorough investigation, PR model FCNN (PR-FCNN) found be best improved R-squared (R2) values, portraying concentration accurately. Based experimentation, preset recommends implementing approaches, offering better especially PM2.5.

Язык: Английский

Процитировано

0

Assessing National Governance Modernization: Leveraging the Ordered Weighted Geometric Composition Operator DOI
Shasha Jiang,

Zixue Guo,

Yuntong Zhang

и другие.

Finance research letters, Год журнала: 2024, Номер 71, С. 106377 - 106377

Опубликована: Ноя. 10, 2024

Язык: Английский

Процитировано

0

Disaggregating air, water and renewable energy disclosures in developing economies: the role of regulatory impact and board characteristics DOI
Anup Kumar Saha, Imran Khan

Journal of Applied Accounting Research, Год журнала: 2024, Номер unknown

Опубликована: Ноя. 13, 2024

Purpose This study examines how board characteristics influence air, water and renewable energy (AWR) disclosures in an emerging economy. It argues for the necessity of separating these to address unique environmental impacts stakeholder concerns. Design/methodology/approach Using longitudinal data from environmentally sensitive firms (2014–2022), a disclosure index based on Global Reporting Initiative (GRI) framework was developed quantify AWR separately. To potential statistical issues such as endogeneity selection bias, analysis employed set robust regression models, including industry fixed effects (FE) model, lagged model two-stage least squares (2SLS) model. Findings Board size audit committees positively all disclosures, while foreign directors significantly impact air disclosures. meetings negatively affect Surprisingly, independence shows no significant impact, gender diversity has notable relationship. Post-amendment, increased though participation remains limited. Research limitations/implications Grounded legitimacy theory, this contributes literature by demonstrating offers stakeholders more precise insights into manage specific The findings are listed Bangladesh may not be generalisable unlisted or other regions. Practical implications emphasises importance distinct reporting, offering valuable regulators corporate boards improve transparency sustainability practices. Social Separating provides with clearer assessments firms' performance, promoting accountability informed decision-making. Originality/value uniquely need disaggregating economies. By focussing each issue separately, research highlights offer challenges, pollution, management transition sources. disaggregation is essential – particularly regulators, investors policymakers assess respond efforts accurately.

Язык: Английский

Процитировано

0

Triple Bottom Line and Decision-Making: An Investigation into the Concept of Confluence DOI
Konstantina Ragazou, Constantin Zopounidis,

Alexandros Garefalakis

и другие.

Multiple criteria decision making, Год журнала: 2024, Номер unknown, С. 1 - 15

Опубликована: Янв. 1, 2024

Язык: Английский

Процитировано

0