Fuel, Год журнала: 2024, Номер 382, С. 133802 - 133802
Опубликована: Ноя. 21, 2024
Язык: Английский
Fuel, Год журнала: 2024, Номер 382, С. 133802 - 133802
Опубликована: Ноя. 21, 2024
Язык: Английский
ACS Applied Materials & Interfaces, Год журнала: 2025, Номер unknown
Опубликована: Фев. 27, 2025
The electrochemical nitrogen reduction reaction (NRR) provides a sustainable alternative to ammonia synthesis. However, the development of catalysts with high activity and selectivity under ambient conditions remains significant challenge. In this work, we propose class dual-atom (DACs), consisting two metal atoms embedded in nitrogen-doped porous graphene (M2NPG) supported on ferroelectric α-In2Se3 monolayer. Using density functional theory (DFT) calculations, explore effect polarization switching structural stability, catalytic performance, mechanisms these DACs. By computationally screening 27 as active sites, identify four promising candidates (V, Co, Ru, Ta) V2NPG@In2Se3 standing out due its exceptional properties. precise control NRR pathways, along tunable limiting potentials selective product formation, can be achieved through combination low potential, abundant behavior, against hydrogen evolution (HER) highlights potential traditional single-atom catalysts. This work demonstrates versatile strategy for integrating DACs materials, offering valuable insights into designing next-generation beyond.
Язык: Английский
Процитировано
0International Journal of Hydrogen Energy, Год журнала: 2025, Номер unknown
Опубликована: Март 1, 2025
Язык: Английский
Процитировано
0Renewable and Sustainable Energy Reviews, Год журнала: 2025, Номер 217, С. 115718 - 115718
Опубликована: Апрель 14, 2025
Язык: Английский
Процитировано
0Chemical Engineering & Technology, Год журнала: 2025, Номер unknown
Опубликована: Апрель 21, 2025
Abstract Because of the complexity green ammonia production, identifying useful information from massive data to construct a streamlined and interpretable prediction model is challenge. This paper proposed an improved transfer entropy method enhanced in capturing causal relationships between variables. Furthermore, compact temporal identification algorithm was introduced, combining direct identification. integrates advantages both methods, enabling rapid clear pathways high‐dimensional variable spaces. In industrial validation actual process, average number predictive variables based on temporal‐dependent Markov blankets were 3.341 10.171, respectively, yielding accuracies ( R 2 ) 0.887 0.905. The provides new solutions for modeling processes.
Язык: Английский
Процитировано
0International Journal of Hydrogen Energy, Год журнала: 2025, Номер unknown
Опубликована: Апрель 1, 2025
Язык: Английский
Процитировано
0Food Bioscience, Год журнала: 2024, Номер 62, С. 105272 - 105272
Опубликована: Окт. 10, 2024
Язык: Английский
Процитировано
1Current Opinion in Green and Sustainable Chemistry, Год журнала: 2024, Номер unknown, С. 100980 - 100980
Опубликована: Окт. 1, 2024
Язык: Английский
Процитировано
1Fuel, Год журнала: 2024, Номер 382, С. 133802 - 133802
Опубликована: Ноя. 21, 2024
Язык: Английский
Процитировано
1