Assessment of Tail-Cutting in Frozen Albacore (Thunnus alalunga) Through Ultrasound Inspection and Chemical Analysis DOI Creative Commons
M. Yagi, Akira Sakai,

Suguru Yasutomi

и другие.

Foods, Год журнала: 2024, Номер 13(23), С. 3860 - 3860

Опубликована: Ноя. 29, 2024

Fat content is the main criterion for evaluating albacore quality. However, no reports exist on accuracy of tail-cutting method, a method used to assess fat albacore. Here, we evaluated this by comparing it with chemical analysis and ultrasound inspection. We measured actual in using compared results those obtained method. Significant discrepancies (99% CI, t-test) were observed among samples. Using as ground truth, from two different companies was 70.0% company A 51.9% B. An inspection revealed that higher reduced amplitude signals statistical significance t-test). Finally, machine learning algorithms enforce The best combination algorithm achieved an 84.2% selecting fat-rich albacore, which better than (73.6%). Our findings suggested could be valuable non-destructive estimating achieving traditional

Язык: Английский

Integration of Artificial Intelligence and Advanced Optimization Techniques for Continuous Gas Lift under Restricted Gas Supply: A Case Study DOI Creative Commons

Leila Zeinolabedini,

Forough Ameli, Abdolhossein Hemmati‐Sarapardeh

и другие.

Digital Chemical Engineering, Год журнала: 2025, Номер 14, С. 100220 - 100220

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

0

Choke Flow Oil Rate Through Surface Data: Modeling via Rigorous methods DOI

Jian Shen,

Muntadher Abed Hussein,

Bhavesh Kanabar

и другие.

Flow Measurement and Instrumentation, Год журнала: 2025, Номер unknown, С. 102911 - 102911

Опубликована: Апрель 1, 2025

Язык: Английский

Процитировано

0

Development of a non-intrusive ROM for 5 × 5 rod bundles of PWR using small sample data DOI
Hao Qian,

Guangliang Chen,

Dong Liu

и другие.

Annals of Nuclear Energy, Год журнала: 2025, Номер 217, С. 111347 - 111347

Опубликована: Март 9, 2025

Язык: Английский

Процитировано

0

Improving iron ore blending using radial basis function neural network (RBFNN) for enhanced steel production in Egypt DOI
Hamdy A. M. Sayedahmed

Arabian Journal of Geosciences, Год журнала: 2025, Номер 18(4)

Опубликована: Март 25, 2025

Язык: Английский

Процитировано

0

A new interpolation model for explicit coupling of reservoir and surface facilities using flow tables DOI
M. Barroso, Ivens da Costa Menezes Lima, Francisco Marcondes

и другие.

Fuel, Год журнала: 2025, Номер 395, С. 135253 - 135253

Опубликована: Апрель 5, 2025

Язык: Английский

Процитировано

0

Audio analysis with convolutional neural networks and boosting algorithms tuned by metaheuristics for respiratory condition classification DOI Creative Commons
Safet Purkovic, Luka Jovanovic, Miodrag Živković

и другие.

Journal of King Saud University - Computer and Information Sciences, Год журнала: 2024, Номер unknown, С. 102261 - 102261

Опубликована: Дек. 1, 2024

Язык: Английский

Процитировано

2

MobVGG: Ensemble Technique for Birds and Drones Prediction DOI Creative Commons
Sheikh Muhammad Saqib, Tehseen Mazhar, Muhammad Iqbal

и другие.

Heliyon, Год журнала: 2024, Номер 10(21), С. e39537 - e39537

Опубликована: Окт. 21, 2024

Язык: Английский

Процитировано

1

In-depth exploration and application of fracturing construction curves in fractured tight sandstone reservoirs of the Tarim Basin DOI Creative Commons

Mingjin Cai,

Han Zhang,

Jianli Qiang

и другие.

Frontiers in Earth Science, Год журнала: 2024, Номер 12

Опубликована: Дек. 24, 2024

Fractured tight sandstone reservoirs are representative in the Tarim Basin, characterized by development of natural fractures and diverse interaction modes between artificial fractures. The complex shape construction pressure curves during fracturing makes it difficult for existing fracture extension diagnosis methods to provide effective guidance. To thoroughly explore information contained accurately characterize hydraulic parameters, this study proposes a dynamic bottomhole net calculation method based on real-time data, allowing more precise correction pressure. Subsequently, mode recognition mechanism fractured is established, identifying five extension: activation fractures, restricted extension, communication with vertical penetration concept post-fracturing network index introduced, leading comprehensive diagnosing recognizing suitable reservoirs. Field case studies indicate that: (1) ability activate form closely related pressure; (2) when curve exhibits periodic trends, within reservoir may branch redirect, forming multi-stage fractures; (3) higher corresponds unimpeded flow capacity, indicating better production enhancement effects. conclusion suggests that can enhance potential significant guiding adjustments field operations.

Язык: Английский

Процитировано

0

A Novel Technique in Determining Mud Cake Permeability in SiO2 Nanoparticles and KCl Salt Water Based Drilling Fluid using Deep Learning Algorithm DOI Creative Commons
Muhammad Arif Khan, Faiq Azhar Abbasi, Shaine Mohammadali Lalji

и другие.

International Journal of Petroleum Technology, Год журнала: 2024, Номер 11, С. 29 - 39

Опубликована: Окт. 28, 2024

The permeability of the mud cake formed at formation-wellbore interface is an important factor in designing water-based drilling fluids. This study presents a novel approach to utilizing experimental thixotropic and rheological parameters polymeric fluids having varying concentrations SiO2 nanoparticles KCl salt. A fully connected feed-forward multi-layered neural network, more commonly known as Multilayer Perceptron (MLP) was developed predict using input such & concentration, differential pressure, temperature, thickness, API LPLT HPHT filter loss volume spurt volume. results suggested that model effectively determined based on WBDF mentioned above. converged global minima, minimizing function Gradient descent algorithm. higher Coefficient Determination (R2) value i.e., 0.8781, lesser Root Mean Square Error (RMSE) 0.04378 indicates accuracy model. Pearson’s Correlation obtained via heatmap strongly influenced by pressure followed volume, temperature. Previous similar studies have focused machine learning algorithms, this utilized robust deep algorithm network simultaneously combined effects salt permeability, offering unprecedented level predicting key performance

Язык: Английский

Процитировано

0

Assessment of Tail-Cutting in Frozen Albacore (Thunnus alalunga) Through Ultrasound Inspection and Chemical Analysis DOI Creative Commons
M. Yagi, Akira Sakai,

Suguru Yasutomi

и другие.

Foods, Год журнала: 2024, Номер 13(23), С. 3860 - 3860

Опубликована: Ноя. 29, 2024

Fat content is the main criterion for evaluating albacore quality. However, no reports exist on accuracy of tail-cutting method, a method used to assess fat albacore. Here, we evaluated this by comparing it with chemical analysis and ultrasound inspection. We measured actual in using compared results those obtained method. Significant discrepancies (99% CI, t-test) were observed among samples. Using as ground truth, from two different companies was 70.0% company A 51.9% B. An inspection revealed that higher reduced amplitude signals statistical significance t-test). Finally, machine learning algorithms enforce The best combination algorithm achieved an 84.2% selecting fat-rich albacore, which better than (73.6%). Our findings suggested could be valuable non-destructive estimating achieving traditional

Язык: Английский

Процитировано

0