
Petroleum Research, Год журнала: 2025, Номер unknown
Опубликована: Апрель 1, 2025
Petroleum Research, Год журнала: 2025, Номер unknown
Опубликована: Апрель 1, 2025
Materials, Год журнала: 2025, Номер 18(6), С. 1384 - 1384
Опубликована: Март 20, 2025
Mullite–corundum ceramics are pivotal in heat transfer pipelines and thermal energy storage systems due to their excellent mechanical properties, stability, chemical resistance. Establishing relationships mechanisms through traditional experiments is time-consuming labor-intensive. In this study, gradient boosting regression (GBR), random forest (RF), artificial neural network (ANN) models were developed predict essential properties such as apparent porosity, bulk density, water absorption, flexural strength of mullite–corundum ceramics. The GBR model (R2 0.91–0.95) outperformed the RF ANN 0.83–0.89 0.88–0.91, respectively) accuracy. Feature importance partial dependence analyses revealed that sintering temperature K2O (~0.25%) positively affected density while negatively influencing porosity absorption. Additionally, temperature, additives, Fe2O3 (optimal content ~5% 1%, related strength. This approach provided new insight into between feedstock compositions process parameters ceramic it explored possible involved.
Язык: Английский
Процитировано
0Journal of Rock Mechanics and Geotechnical Engineering, Год журнала: 2025, Номер unknown
Опубликована: Апрель 1, 2025
Язык: Английский
Процитировано
0Petroleum Research, Год журнала: 2025, Номер unknown
Опубликована: Апрель 1, 2025
Процитировано
0