Lecture notes in networks and systems, Год журнала: 2024, Номер unknown, С. 461 - 471
Опубликована: Янв. 1, 2024
Lecture notes in networks and systems, Год журнала: 2024, Номер unknown, С. 461 - 471
Опубликована: Янв. 1, 2024
Expert Systems with Applications, Год журнала: 2025, Номер 286, С. 127942 - 127942
Опубликована: Май 14, 2025
Язык: Английский
Процитировано
0Lecture notes in computer science, Год журнала: 2025, Номер unknown, С. 220 - 241
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
0International Journal of Electrical Power & Energy Systems, Год журнала: 2025, Номер 169, С. 110796 - 110796
Опубликована: Июнь 5, 2025
Язык: Английский
Процитировано
0Journal of King Saud University - Computer and Information Sciences, Год журнала: 2024, Номер 36(8), С. 102177 - 102177
Опубликована: Авг. 31, 2024
Язык: Английский
Процитировано
2Journal of Grid Computing, Год журнала: 2024, Номер 22(4)
Опубликована: Сен. 23, 2024
Язык: Английский
Процитировано
2Опубликована: Март 15, 2024
This paper proposes an Enhanced Virtualization of Resources (EVR) system for high performance applications in Cloud Computing. It uses a Deep Regression Model (DRM) to predict the resource requirements application be deployed on Cloud. The model takes into account various parameters like number users, bandwidth requirements, processing time, I/O requests and server capability make accurate predictions. is further optimized with Genetic Algorithm, which mutation, crossover selection operations ensure produces high-accuracy output. resulting then used by EVR decide nodes should allocated best performance. evaluated using metrics such as query response allocation accuracy. Results demonstrate that proposed can provide up 73.3% more efficiency than existing approaches virtualization.
Язык: Английский
Процитировано
0Опубликована: Янв. 1, 2024
Download This Paper Open PDF in Browser Add to My Library Share: Permalink Using these links will ensure access this page indefinitely Copy URL DOI
Язык: Английский
Процитировано
0Опубликована: Янв. 1, 2024
Язык: Английский
Процитировано
0Sensors, Год журнала: 2024, Номер 24(16), С. 5272 - 5272
Опубликована: Авг. 14, 2024
Task scheduling is a critical challenge in cloud computing systems, greatly impacting their performance. nondeterministic polynomial time hard (NP-Hard) problem that complicates the search for nearly optimal solutions. Five major uncertainty parameters, i.e., security, traffic, workload, availability, and price, influence task decisions. The primary rationale selecting these parameters lies of accurately measuring values, as empirical estimations often diverge from actual values. integral-valued Pythagorean fuzzy set (IVPFS) promising mathematical framework to deal with parametric uncertainties. Dyna Q+ algorithm updated form Q agent designed specifically dynamic environments by providing bonus rewards non-exploited states. In this paper, enriched IVPFS make intelligent performance proposed scheduler tested using CloudSim 3.3 simulator. execution reduced 90%, makespan also operation cost below 50%, resource utilization rate improved 95%, all meeting desired standards or expectations. results are further validated an expected value analysis methodology confirms good scheduler. A better balance between exploration exploitation through rigorous action-based learning achieved agent.
Язык: Английский
Процитировано
0Lecture notes in networks and systems, Год журнала: 2024, Номер unknown, С. 461 - 471
Опубликована: Янв. 1, 2024
Процитировано
0