Enhancing Workflow Efficiency: A Modified Firefly Algorithm for Hybrid Cloud-Edge Environments DOI Creative Commons
Deafallah Alsadie, Musleh Alsulami

Research Square (Research Square), Год журнала: 2024, Номер unknown

Опубликована: Авг. 8, 2024

Abstract Efficient scheduling of scientific workflows in cloud computing environments is essential for optimizing resource utilization and minimizing completion time. In this study, we comprehensively evaluate different algorithms, focusing on the Modified Firefly Optimization Algorithm (ModFOA) comparison with existing methods like Ant Colony (ACO), Genetic (GA), Particle Swarm (PSO). Our investigation considers key performance metrics such as makespan, utilization, energy consumption across diverse configurations scenarios. Scientific often involve intricate tasks dependencies, posing challenges efficient scheduling. While algorithms have shown promise, they may not fully address unique requirements environments, leading to suboptimal outcomes. Therefore, propose evaluating ModFOA’s effectiveness cloud. Through comparative analysis, ModFOA demonstrates superior terms achieving lower times various configurations. Additionally, exhibits competitive moderate consumption, positioning it a promising solution workflow environments. This study underscores significance selecting highlights potential improving management Further research could focus refining parameters validating its practicality real-world

Язык: Английский

Beyond Cloud: Serverless Functions in the Compute Continuum DOI Creative Commons

Cecilia Calavaro,

Valeria Cardellini, Francesco Lo Presti

и другие.

SN Computer Science, Год журнала: 2025, Номер 6(3)

Опубликована: Фев. 18, 2025

Язык: Английский

Процитировано

0

Serverless Computing for Next-generation Application Development DOI
Adel N. Toosi, Bahman Javadi, Alexandru Iosup

и другие.

Future Generation Computer Systems, Год журнала: 2024, Номер unknown, С. 107573 - 107573

Опубликована: Окт. 1, 2024

Язык: Английский

Процитировано

1

HEFTLess: A Bi-Objective Serverless Workflow Batch Orchestration on the Computing Continuum DOI
Reza Farahani, Narges Mehran, Sasko Ristov

и другие.

Опубликована: Сен. 24, 2024

Язык: Английский

Процитировано

1

Enhancing Workflow Efficiency: A Modified Firefly Algorithm for Hybrid Cloud-Edge Environments DOI Creative Commons
Deafallah Alsadie, Musleh Alsulami

Research Square (Research Square), Год журнала: 2024, Номер unknown

Опубликована: Авг. 8, 2024

Abstract Efficient scheduling of scientific workflows in cloud computing environments is essential for optimizing resource utilization and minimizing completion time. In this study, we comprehensively evaluate different algorithms, focusing on the Modified Firefly Optimization Algorithm (ModFOA) comparison with existing methods like Ant Colony (ACO), Genetic (GA), Particle Swarm (PSO). Our investigation considers key performance metrics such as makespan, utilization, energy consumption across diverse configurations scenarios. Scientific often involve intricate tasks dependencies, posing challenges efficient scheduling. While algorithms have shown promise, they may not fully address unique requirements environments, leading to suboptimal outcomes. Therefore, propose evaluating ModFOA’s effectiveness cloud. Through comparative analysis, ModFOA demonstrates superior terms achieving lower times various configurations. Additionally, exhibits competitive moderate consumption, positioning it a promising solution workflow environments. This study underscores significance selecting highlights potential improving management Further research could focus refining parameters validating its practicality real-world

Язык: Английский

Процитировано

0