Recent Trends on the use of Infrared Spectroscopy for Soil Assessment DOI Open Access
Angelo Jamil Maia

Journal of Biomedical Research & Environmental Sciences, Год журнала: 2023, Номер 4(11), С. 1618 - 1623

Опубликована: Ноя. 1, 2023

Infrared spectroscopy has emerged as a powerful tool to assess soil properties for both environmental science and agriculture. Here, we explore its recent trends developments assessment. This technique is an alternative that counters the limitations of traditional laboratory methods, offering cost-effective non-destructive approach. latest in innovation landscape infrared assessment are explored, providing insights on broad range applications into future trajectory this technology. Firstly, delve agriculture, highlighting potential prediction many attributes. Next, carbon assessment, emphasizing importance estimating organic stock quality. Soil pollution elemental contents addressed, focusing potentially toxic elements concentrations soil, strongly relevant monitoring. emerges valuable rapid non-hazardous content physical prediction, traditionally limited texture analysis, extended through application novel approaches, shedding light broader technology quality The ongoing statistical modeling technological also showcased, mainly focused machine learning methods. Lastly, spectral libraries emphasized, such Global Spectral Calibration Library Estimation Service, Brazilian Library. In conclusion, become important multitude across agricultural contexts. review underscores growing advancing standardization reproducibility sustainable procedures, ensuring brighter science.

Язык: Английский

SHAP values accurately explain the difference in modeling accuracy of convolution neural network between soil full-spectrum and feature-spectrum DOI
Liang Zhong, Guo Xi, Meng Ding

и другие.

Computers and Electronics in Agriculture, Год журнала: 2024, Номер 217, С. 108627 - 108627

Опубликована: Янв. 13, 2024

Язык: Английский

Процитировано

21

Ensemble and transfer learning of soil inorganic carbon with visible near-infrared spectra DOI Creative Commons
Yu Wang, Keyang Yin, Bifeng Hu

и другие.

Geoderma, Год журнала: 2025, Номер 456, С. 117257 - 117257

Опубликована: Март 15, 2025

Язык: Английский

Процитировано

2

Soil organic matter content prediction in tobacco fields based on hyperspectral remote sensing and generative adversarial network data augmentation DOI
Yu Xia,

Xueying Cheng,

Xiao Hu

и другие.

Computers and Electronics in Agriculture, Год журнала: 2025, Номер 233, С. 110164 - 110164

Опубликована: Март 5, 2025

Язык: Английский

Процитировано

1

Quantitative prediction and visualization of matcha color physicochemical indicators using hyperspectral microscope imaging technology DOI
Dengshan Li, Bosoon Park, Rui Kang

и другие.

Food Control, Год журнала: 2024, Номер 163, С. 110531 - 110531

Опубликована: Апрель 18, 2024

Язык: Английский

Процитировано

8

Minimize of moisture effects from laboratory simulations of in-situ Vis-NIR spectral for the prediction of soil salinity DOI
Yu Wang, Bifeng Hu,

Yongsheng Hong

и другие.

Infrared Physics & Technology, Год журнала: 2024, Номер 137, С. 105194 - 105194

Опубликована: Фев. 2, 2024

Язык: Английский

Процитировано

7

Whale optimization algorithm coupled with machine learning models for quantitative prediction of soil Ni content DOI
Chengbiao Fu,

Xiqin Feng,

Anhong Tian

и другие.

Microchemical Journal, Год журнала: 2025, Номер 209, С. 112709 - 112709

Опубликована: Янв. 7, 2025

Язык: Английский

Процитировано

0

Estimation of soil chromium content using visible and near-infrared spectroscopy coupled with discrete wavelet transform and long short-term memory model DOI
Chengbiao Fu, Shuang Cao, Anhong Tian

и другие.

Advances in Space Research, Год журнала: 2025, Номер unknown

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

0

Mapping the distribution and magnitude of soil inorganic and organic carbon stocks across Australia DOI Creative Commons
Wartini Ng, José Padarian, Mercedes Román Dobarco

и другие.

Geoderma, Год журнала: 2025, Номер 456, С. 117239 - 117239

Опубликована: Март 8, 2025

Язык: Английский

Процитировано

0

Spatial Inversion of Soil Organic Carbon Content Based on Hyperspectral Data and Sentinel‐2 Images DOI

Xiaoyu Huang,

Xuemei Wang, Yanping Guo

и другие.

Land Degradation and Development, Год журнала: 2025, Номер unknown

Опубликована: Апрель 3, 2025

ABSTRACT Given that Sentinel‐2 (S2) multispectral images provide extensive spatial information and ground‐based hyperspectral data capture refined spectral characteristics, their integration can enhance both the comprehensiveness precision of surface acquisition. This study seeks to leverage these sources develop an optimized estimation model for accurately monitoring large‐scale soil organic carbon (SOC) content, thereby addressing current limitations in multi‐source fusion research. In this study, using mathematical transformation discrete wavelet transform process ground delta oasis Weigan Kuqa rivers Xinjiang, China, combination with S2 image, machine learning algorithms were employed construct models SOC content total variables characteristic variables, inversion oases was carried out. We found R ‐DWT‐H9 significantly correlation between ( p < 0.001). The accuracy constructed based on feature selected by SPA IRIV generally higher than variable models. IRIV‐RFR had highest stable capability. values 2 training validation sets 0.66 0.64, respectively. RMSE 1.5 g∙kg −1 , RPD > 1.4. interior oasis, mainly deficient (61.35%) or relatively (8.17%), while periphery it extremely (30.48%). Combine providing a reference evaluating fertility arid regions.

Язык: Английский

Процитировано

0

Soil Organic Carbon Prediction and Mapping in Morocco Using PRISMA Hyperspectral Imagery and Meta-Learner Model DOI Creative Commons
Yassine Bouslıhım, Abdelkrim Bouasria, Budiman Minasny

и другие.

Remote Sensing, Год журнала: 2025, Номер 17(8), С. 1363 - 1363

Опубликована: Апрель 11, 2025

Accurate mapping of soil organic carbon (SOC) supports sustainable land management practices and accounting initiatives for mitigating climate change impacts. This study presents a novel meta-learner framework that combines multiple machine learning algorithms spectra processing to optimize SOC prediction using the PRISMA hyperspectral satellite imagery in Doukkala plain Morocco. The employs two-layer structure models. first layer consists Random Forest (RF), Support Vector Regression (SVR), Partial Least Squares (PLSR). These base models were configured data smoothing, transformation, spectral feature selection techniques, based on 70/30% split. second utilizes ridge regression model as integrate predictions from Results indicated RF SVR performance improved primarily with selection, while PLSR was most influenced by smoothing. approach outperformed individual models, achieving an average relative improvement 48.8% over single R2 0.65, RMSE 0.194%, RPIQ 2.247. contributes development methodologies predicting properties data.

Язык: Английский

Процитировано

0