Synergetic Use of Bare Soil Composite Imagery and Multitemporal Vegetation Remote Sensing for Soil Mapping (A Case Study from Samara Region’s Upland) DOI Creative Commons
А. В. Чинилин, Nikolai Lozbenev, P. M. Shilov

и другие.

Land, Год журнала: 2024, Номер 13(12), С. 2229 - 2229

Опубликована: Дек. 20, 2024

This study presents an approach for predicting soil class probabilities by integrating synthetic composite imagery of bare with long-term vegetation remote sensing data and survey data. The goal is to develop detailed maps the agro-innovation center “Orlovka-AIC” (Samara Region), a focus on lithological heterogeneity. Satellite were sourced from cloud-filtered collection Landsat 4–5 7 images (April–May, 1988–2010) 8–9 (June–August, 2012–2023). Bare surfaces identified using threshold values NDVI (<0.06), NBR2 (<0.05), BSI (>0.10). Synthetic generated calculating median reflectance across available spectral bands. Following adoption no-till technology in 2012, average additionally calculated assess condition agricultural lands. Seventy-one sampling points within classified both Russian WRB classification systems. Logistic regression was applied pixel-based prediction. model achieved overall accuracy 0.85 Cohen’s Kappa coefficient 0.67, demonstrating its reliability distinguishing two main classes: agrochernozems agrozems. resulting map provides robust foundation sustainable land management practices, including erosion prevention use optimization.

Язык: Английский

Social-ecological system sustainability in China from the perspective of supply-demand balance for ecosystem services DOI

Jiawang Zhang,

Ming Wang, Kai Liu

и другие.

Journal of Cleaner Production, Год журнала: 2025, Номер unknown, С. 145039 - 145039

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

0

Improving the accuracy of soil organic matter mapping in typical Planosol areas based on prior knowledge and probability hybrid model DOI

Deqiang Zang,

Yinghui Zhao, Chong Luo

и другие.

Soil and Tillage Research, Год журнала: 2024, Номер 246, С. 106358 - 106358

Опубликована: Ноя. 14, 2024

Язык: Английский

Процитировано

2

Improved soil organic matter monitoring by using cumulative crop residue indices derived from time-series remote sensing images in the central black soil region of China DOI
Meiwei Zhang, Xiaolin Sun, Meinan Zhang

и другие.

Soil and Tillage Research, Год журнала: 2024, Номер 246, С. 106357 - 106357

Опубликована: Ноя. 13, 2024

Язык: Английский

Процитировано

2

Synergetic Use of Bare Soil Composite Imagery and Multitemporal Vegetation Remote Sensing for Soil Mapping (A Case Study from Samara Region’s Upland) DOI Creative Commons
А. В. Чинилин, Nikolai Lozbenev, P. M. Shilov

и другие.

Land, Год журнала: 2024, Номер 13(12), С. 2229 - 2229

Опубликована: Дек. 20, 2024

This study presents an approach for predicting soil class probabilities by integrating synthetic composite imagery of bare with long-term vegetation remote sensing data and survey data. The goal is to develop detailed maps the agro-innovation center “Orlovka-AIC” (Samara Region), a focus on lithological heterogeneity. Satellite were sourced from cloud-filtered collection Landsat 4–5 7 images (April–May, 1988–2010) 8–9 (June–August, 2012–2023). Bare surfaces identified using threshold values NDVI (<0.06), NBR2 (<0.05), BSI (>0.10). Synthetic generated calculating median reflectance across available spectral bands. Following adoption no-till technology in 2012, average additionally calculated assess condition agricultural lands. Seventy-one sampling points within classified both Russian WRB classification systems. Logistic regression was applied pixel-based prediction. model achieved overall accuracy 0.85 Cohen’s Kappa coefficient 0.67, demonstrating its reliability distinguishing two main classes: agrochernozems agrozems. resulting map provides robust foundation sustainable land management practices, including erosion prevention use optimization.

Язык: Английский

Процитировано

0