Synergetic Use of Bare Soil Composite Imagery and Multitemporal Vegetation Remote Sensing for Soil Mapping (A Case Study from Samara Region’s Upland) DOI Creative Commons
А. В. Чинилин, Nikolai Lozbenev, P. M. Shilov

и другие.

Land, Год журнала: 2024, Номер 13(12), С. 2229 - 2229

Опубликована: Дек. 20, 2024

This study presents an approach for predicting soil class probabilities by integrating synthetic composite imagery of bare with long-term vegetation remote sensing data and survey data. The goal is to develop detailed maps the agro-innovation center “Orlovka-AIC” (Samara Region), a focus on lithological heterogeneity. Satellite were sourced from cloud-filtered collection Landsat 4–5 7 images (April–May, 1988–2010) 8–9 (June–August, 2012–2023). Bare surfaces identified using threshold values NDVI (<0.06), NBR2 (<0.05), BSI (>0.10). Synthetic generated calculating median reflectance across available spectral bands. Following adoption no-till technology in 2012, average additionally calculated assess condition agricultural lands. Seventy-one sampling points within classified both Russian WRB classification systems. Logistic regression was applied pixel-based prediction. model achieved overall accuracy 0.85 Cohen’s Kappa coefficient 0.67, demonstrating its reliability distinguishing two main classes: agrochernozems agrozems. resulting map provides robust foundation sustainable land management practices, including erosion prevention use optimization.

Язык: Английский

High-Accuracy Mapping of Soil Organic Carbon by Mining Sentinel-1/2 Radar and Optical Time-Series Data with Super Ensemble Model DOI Creative Commons

Zhibo Cui,

Songchao Chen, Bifeng Hu

и другие.

Remote Sensing, Год журнала: 2025, Номер 17(4), С. 678 - 678

Опубликована: Фев. 17, 2025

Accurate digital soil organic carbon mapping is of great significance for regulating the global cycle and addressing climate change. With advent remote sensing big data era, multi-source multi-temporal techniques have been extensively applied in Earth observation. However, how to fully mine time-series high-accuracy SOC remains a key challenge. To address this challenge, study introduced new idea mining data. We used 413 topsoil samples from southern Xinjiang, China, as an example. By (Sentinel-1/2) 2017 2023, we revealed temporal variation pattern correlation between Sentinel-1/2 SOC, thereby identifying optimal time window monitoring using integrating environmental covariates super ensemble model, achieved Southern China. The results showed following aspects: (1) windows were July–September July–August, respectively; (2) modeling accuracy sensor integrated with was superior single-source alone. In model based on data, cumulative contribution rate Sentinel-2 51.71% higher than that Sentinel-1 data; (3) stacking model’s predictive performance outperformed weight average simple models. Therefore, covariates, driven represents strategy mapping.

Язык: Английский

Процитировано

1

Satellite Soil Observation (Satsoil): Extraction of Bare Soil Reflectance for Soil Organic Carbon Mapping on Google Earth Engine DOI
Morteza Khazaei, Preston Sorenson, Ramata Magagi

и другие.

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

0

Integrating GIS and Remote Sensing for Soil Attributes Mapping in Degraded Pastures of the Brazilian Cerrado DOI Creative Commons
Rômullo Oliveira Louzada, Ivan Bergier, Édson Luís Bolfe

и другие.

Soil Advances, Год журнала: 2025, Номер unknown, С. 100044 - 100044

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

0

Comparing sentinel-2 and Landsat 8 spectral reflectance indices for predicting soil organic carbon DOI
Cheng Lin

Environmental Earth Sciences, Год журнала: 2025, Номер 84(8)

Опубликована: Апрель 1, 2025

Язык: Английский

Процитировано

0

Enhancing proximal and remote sensing of soil organic carbon: A local modelling approach guided by spectral and spatial similarities DOI Creative Commons
Qi Sun, Pu Shi

Geoderma, Год журнала: 2025, Номер 457, С. 117298 - 117298

Опубликована: Апрель 22, 2025

Язык: Английский

Процитировано

0

Mapping surface soil organic carbon in the coal–grain composite area: threshold and interaction effects of coal mining activities DOI Creative Commons
Zening Wu,

Xiangyang Feng,

Yiyun Chen

и другие.

Environmental Sciences Europe, Год журнала: 2025, Номер 37(1)

Опубликована: Март 26, 2025

Язык: Английский

Процитировано

0

Improved soil organic matter monitoring by using cumulative crop residue indices derived from time-series remote sensing images in the central black soil region of China DOI
Meiwei Zhang, Xiaolin Sun, Meinan Zhang

и другие.

Soil and Tillage Research, Год журнала: 2024, Номер 246, С. 106357 - 106357

Опубликована: Ноя. 13, 2024

Язык: Английский

Процитировано

2

Synergetic Use of Bare Soil Composite Imagery and Multitemporal Vegetation Remote Sensing for Soil Mapping (A Case Study from Samara Region’s Upland) DOI Creative Commons
А. В. Чинилин, Nikolai Lozbenev, P. M. Shilov

и другие.

Land, Год журнала: 2024, Номер 13(12), С. 2229 - 2229

Опубликована: Дек. 20, 2024

This study presents an approach for predicting soil class probabilities by integrating synthetic composite imagery of bare with long-term vegetation remote sensing data and survey data. The goal is to develop detailed maps the agro-innovation center “Orlovka-AIC” (Samara Region), a focus on lithological heterogeneity. Satellite were sourced from cloud-filtered collection Landsat 4–5 7 images (April–May, 1988–2010) 8–9 (June–August, 2012–2023). Bare surfaces identified using threshold values NDVI (<0.06), NBR2 (<0.05), BSI (>0.10). Synthetic generated calculating median reflectance across available spectral bands. Following adoption no-till technology in 2012, average additionally calculated assess condition agricultural lands. Seventy-one sampling points within classified both Russian WRB classification systems. Logistic regression was applied pixel-based prediction. model achieved overall accuracy 0.85 Cohen’s Kappa coefficient 0.67, demonstrating its reliability distinguishing two main classes: agrochernozems agrozems. resulting map provides robust foundation sustainable land management practices, including erosion prevention use optimization.

Язык: Английский

Процитировано

0