Corrigendum to “The problematic case of data leakage: A case for leave-profile-out cross-validation in 3-dimensional digital soil mapping” [Geoderma 455 (2025) 117223] DOI Creative Commons
Kingsley John, Daniel D. Saurette, Brandon Heung

и другие.

Geoderma, Год журнала: 2025, Номер unknown, С. 117286 - 117286

Опубликована: Апрель 1, 2025

Язык: Английский

Machine Learning and Artificial Intelligence Applications in Soil Science DOI
Budiman Minasny,

Alex B. McBratney

European Journal of Soil Science, Год журнала: 2025, Номер 76(2)

Опубликована: Март 1, 2025

ABSTRACT The awarding of the Nobel Prize in Physics to pioneers neural networks highlights their substantial influence across diverse disciplines, including soil science. This article explores evolution and transformative impact machine learning artificial intelligence (AI) These technologies have revolutionised modelling complex processes, enhancing our ability predict map properties, simulate water movement assess global carbon dynamics. discusses future directions for AI science, such as developing new mathematical matrices integrating with science knowledge improve precision efficiency assessments. As evolves, its potential includes generating hypotheses, optimising carbon–mineral associations better sequestration phenotyping high‐throughput data analysis. Integrating physical models could lead more precise, data‐driven management practices that support net‐zero, nature‐positive stewardship improved security.

Язык: Английский

Процитировано

1

Corrigendum to “The problematic case of data leakage: A case for leave-profile-out cross-validation in 3-dimensional digital soil mapping” [Geoderma 455 (2025) 117223] DOI Creative Commons
Kingsley John, Daniel D. Saurette, Brandon Heung

и другие.

Geoderma, Год журнала: 2025, Номер unknown, С. 117286 - 117286

Опубликована: Апрель 1, 2025

Язык: Английский

Процитировано

0