GROUNDWATER POTENTIAL ASSESSMENT IN GIA LAI PROVINCE (VIETNAM) USING MACHINE LEARNING, REMOTE SENSING AND GIS DOI Open Access
Huu Duy Nguyen,

Van Trong Giang,

Quang-Hai TRUONG

и другие.

Geographia Technica, Год журнала: 2024, Номер 19(2/2024), С. 13 - 32

Опубликована: Май 15, 2024

Population growth, urbanization and rapid industrial development increase the demand for water resources.Groundwater is an important resource in sustainable socio-economic development.The identification of regions with probability existence groundwater necessary helping decision makers to propose effective strategies management this resource.The objective study construct maps potential groundwater, based on machine learning algorithms, namely deep neural networks (DNNs), XGBoost (XGB), CatBoost (CB), Gia Lai province Vietnam.In study, 12 conditioning factors, elevation, aspect, curvature, slope, soil type, river density, distance road, land use/land cover (LULC), Normalized Difference Vegetation Index (NDVI), Normal Built-up (NDBI), Water (NDWI), rainfall were used, along 181 inventory points, models.The proposed models evaluated using receiver operating characteristic (ROC) curve, area under curve (AUC), root-mean-square error (RMSE), mean absolute (MAE).The results showed that predictions most accurate XGB model; CB came second, DNN was performed least well.About 4,990 km² found be category very low potential; 3,045 category; 2,426 classified as moderate, 2,665 high, 2,007 high.The methodology used creating maps.This approach, can provide valuable information factors influencing assist decisionmakers or developers managing resources sustainably.It also supports territory, including tourism.This other geographic a small change input data.

Язык: Английский

Integrating geospatial, hydrogeological, and geophysical data to identify groundwater recharge potential zones in the Sulaymaniyah basin, NE of Iraq DOI Creative Commons
Sarkhel H. Mohammed, Musaab A. A. Mohammed,

Hawber Ata Karim

и другие.

Scientific Reports, Год журнала: 2025, Номер 15(1)

Опубликована: Март 22, 2025

Abstract Groundwater is a critical resource for sustaining human activities, particularly in urban areas, where its importance exaggerated by growing water demands, expansion, and industrial activities. Ensuring future security necessitates an in-depth understanding of groundwater recharge dynamics, which are often complex influenced rapid urbanization. The alarming decline resources both rural regions underscore the urgency advanced management strategies. However, identifying evaluating potential zones (GWPZs) remains challenge due to dynamic interplay hydrogeological development factors. This study employs integrated approach combining geographic information system (GIS), remote sensing, multi-criteria decision analysis using analytical hierarchy process (MCDA-AHP) delineate GWPZs Sulaymaniyah Basin (SB). methodology further supported data validated through geophysical investigation electrical resistivity tomography (ERT) data. For MCDA-AHP, six thematic layers including rainfall, geology, lineament density, slope, drainage land use/land cover were derived from satellite imagery, geological surveys, well These ranked based on their relative influence GIS-based weighted overlay generate maps. results identified three recharge: low (11.26%), moderate (45.51%), high (43.23%). Validation ERT receiver operating characteristics (ROC) revealed strong agreement, with area under curve (AUC) accuracy 86%. findings demonstrate robustness approach, providing reliable tool minimizing hydrogeophysical exploration costs reducing number unsuccessful boreholes.

Язык: Английский

Процитировано

2

Groundwater drought risk assessment in the semi-arid Kansai river basin, West Bengal, India using SWAT and machine learning models DOI
Amit Bera, Nikhil Kumar Baranval, Rajwardhan Kumar

и другие.

Groundwater for Sustainable Development, Год журнала: 2024, Номер 26, С. 101254 - 101254

Опубликована: Июнь 26, 2024

Язык: Английский

Процитировано

7

Effectiveness of hybrid ensemble machine learning models for landslide susceptibility analysis: Evidence from Shimla district of North-west Indian Himalayan region DOI
Aastha Sharma, Haroon Sajjad, Md Hibjur Rahaman

и другие.

Journal of Mountain Science, Год журнала: 2024, Номер 21(7), С. 2368 - 2393

Опубликована: Июль 1, 2024

Язык: Английский

Процитировано

6

Integrating in-situ data and spatial decision support systems (SDSS) to identify groundwater potential sites in the Esan Plateau, Nigeria DOI
Kesyton Oyamenda Ozegin, Ilugbo Stephen Olubusola,

Owens Monday Alile

и другие.

Groundwater for Sustainable Development, Год журнала: 2024, Номер 26, С. 101276 - 101276

Опубликована: Июль 14, 2024

Язык: Английский

Процитировано

5

Mapping and modeling groundwater potential using machine learning, deep learning and ensemble learning models in the Saiss basin (Fez-Meknes Region, Morocco) DOI

Hind Ragragui,

My Hachem Aouragh, Abdellah El Hmaidi

и другие.

Groundwater for Sustainable Development, Год журнала: 2024, Номер 26, С. 101281 - 101281

Опубликована: Авг. 1, 2024

Язык: Английский

Процитировано

4

Identification of groundwater potential zones for sustainable groundwater resource management using an integrated approach in Sirkole watershed, Western Ethiopia DOI

Wakgari Yadeta,

Shankar Karuppannan, Dechasa Diriba

и другие.

Groundwater for Sustainable Development, Год журнала: 2024, Номер 27, С. 101328 - 101328

Опубликована: Сен. 5, 2024

Язык: Английский

Процитировано

3

Enhancing Geotourism in Southeastern Morocco through Machine Learning-Based Geomorphosite Identification DOI
Mohamed Manaouch, Lahbib Naimi,

Mbarek Haynou

и другие.

Geoheritage, Год журнала: 2025, Номер 17(1)

Опубликована: Фев. 14, 2025

Язык: Английский

Процитировано

0

Soil loss estimation and susceptibility analysis using RUSLE and random forest algorithm: a case study of Nainital district, India DOI
Yatendra Sharma, Haroon Sajjad, Tamal Kanti Saha

и другие.

Spatial Information Research, Год журнала: 2025, Номер 33(3)

Опубликована: Апрель 29, 2025

Язык: Английский

Процитировано

0

Discrimination of potential groundwater areas using remote sensing, gravity and aeromagnetic data in Rey Bouba and environs, North Cameroon DOI
Quentin Marc Anaba Fotze,

Marcelin Bikoro Bi Alou,

Anatole Eugene Djieto Lordon

и другие.

Groundwater for Sustainable Development, Год журнала: 2025, Номер unknown, С. 101455 - 101455

Опубликована: Май 1, 2025

Язык: Английский

Процитировано

0

Appraising the accuracy of GIS-based bivariate statistical model for groundwater potential mapping in South Africa DOI Creative Commons
Gbenga Olamide Adesola, Oswald Gwavava, Benedict Kinshasa Pharoe

и другие.

Heliyon, Год журнала: 2025, Номер 11(10), С. e43411 - e43411

Опубликована: Май 1, 2025

Язык: Английский

Процитировано

0