GeoJournal, Год журнала: 2025, Номер 90(3)
Опубликована: Май 26, 2025
Язык: Английский
GeoJournal, Год журнала: 2025, Номер 90(3)
Опубликована: Май 26, 2025
Язык: Английский
Applied Water Science, Год журнала: 2024, Номер 14(11)
Опубликована: Окт. 30, 2024
Язык: Английский
Процитировано
3Geocarto International, Год журнала: 2025, Номер 40(1)
Опубликована: Янв. 27, 2025
Язык: Английский
Процитировано
0Water, Год журнала: 2025, Номер 17(10), С. 1546 - 1546
Опубликована: Май 21, 2025
Aquifer health assessment is essential for sustainable groundwater management, particularly in semi-arid regions with challenging geological conditions. This study presents a novel methodology assessing aquifer the Barakar River Basin, hard-rock terrain, by integrating tree-based classification, deep learning, and Soil Water Assessment Tool (SWAT) model. Employing Random Forest, Decision Tree, Convolutional Neural Network (CNN) models, research examines 20 influential factors, including hydrological, water quality, socioeconomic variables, to classify into four categories: Good, Moderately Semi-Critical, Critical. The CNN model exhibited highest predictive accuracy, identifying 33% of basin as having good health, while Forest assessed 27% Critical heath. Pearson correlation analysis CNN-predicted indicates that recharge (r = 0.52), return flow 0.50), fluctuation 0.48) are most positive factors. Validation results showed performed strongly, precision 0.957, Area Under Curve–Receiver Operating Characteristic (AUC-ROC) 0.95, F1 score 0.828, underscoring its reliability robustness. Geophysical Electrical Resistivity Tomography (ERT) field surveys validated these classifications, high- low-aquifer zones. enhances understanding dynamics robust broader applicability management worldwide.
Язык: Английский
Процитировано
0GeoJournal, Год журнала: 2025, Номер 90(3)
Опубликована: Май 26, 2025
Язык: Английский
Процитировано
0